
UNIVERSITY OF OSLO
Department of Informatics

CloudML
A DSL for model-based
realization of
applications in the cloud

Master thesis

Eirik Brandtzæg

Spring 2012

CloudML

Eirik Brandtzæg

Spring 2012

Abstract

Cloud Computing offers a vast amount of resources, available for end users
on a pay-as-you-go basis. The opportunity to choose between several cloud
providers is alluded by complexity of cloud solution heterogeneity. Challenges
with cloud deployment and resource provisioning are identified in this thesis
through experiments, performing full cloud deployments with tools offered by
cloud providers. To tackle these challenges a model-based language (named
CloudML), is purposed to effectively tackle these challenges through abstraction.
This language is supported by an engine able to provision nodes in “the cloud”.
Topologies for these nodes are defined through lexical templates. The engine
supports 24 cloud providers, through software reuse, by leveraging an existing
library. Sufficient metadata for provisioned instances are provided through
models@run.time approach. The engine is implemented and experiments have
been conducted towards provisioning on two of the major cloud providers,
Amazon and Rackspace. These experiments are used to validate the effort of
this thesis. Perspectives and future visions of CloudML are expressed in the end
of this thesis. This work is integrated as a part of the REMICS project.

Contents

1 Introduction 1

I Context 4

2 Background: Cloud Computing and Model-Driven Engineering 5
2.1 Cloud Computing . 5

2.1.1 Characteristics . 6
2.1.2 Service models . 8
2.1.3 Deployment models . 11

2.2 Model-Driven Engineering . 12

3 State of the Art in Provisioning 16
3.1 Model-Driven Approaches . 16
3.2 APIs . 20
3.3 Deployments . 22
3.4 Examples of cloud solutions . 23

4 Challenges in the cloud 25
4.1 Scenario . 25
4.2 Challenges . 28
4.3 Summary . 30

5 Requirements 32
5.1 Comparison . 37
5.2 Requirement dependencies . 37

i

II Contribution 38

6 Vision, concepts and principles 39

7 Analysis and design - CloudML 42
7.1 Meta-model . 42

7.1.1 Single node topology . 43
7.1.2 Three nodes topology . 46
7.1.3 Multi-cloud provisioning 50

7.2 Technological assessments and considerations 51
7.2.1 Programming language and application environment. . . . 51
7.2.2 Asynchronous information gathering and distribution. . . 51
7.2.3 Lexical format. 53

7.3 Modules and application flow . 54

8 Implementation/realization: The cloudml-engine library 57
8.1 Technology overview . 57
8.2 Automatic build system . 59
8.3 Cloud connection . 60
8.4 Asynchronous provisioning . 61
8.5 From text to objects . 63
8.6 Usage . 64

9 Validation & Experiments 66

III Conclusion 72

10 Conclusions 73

11 Perspectives 77
11.1 Short term (implementation) perspectives 77
11.2 Long term research . 78

ii

List of Figures

2.1 Cloud architecture service models. 8
2.2 Model-Driven Architecture. 14

3.1 AWS CloudFormation template. 17
3.2 CA Applogic screenshot. 18
3.3 Madeira Cloud screenshot. 19
3.4 Cloud drivers. 20

4.1 Different architectural ways to provision nodes (topologies). . . . 26

5.1 Requirements, including dependencies. 33

6.1 “Big picture”, overview of CloudML procedure flow. 40

7.1 Meta model of CloudML. 43
7.2 Object diagram of scenario with one node. 44
7.3 CloudML asynchronous provisioning process (Sequence diagram). 45
7.4 Provisioning three nodes provisioning. 47
7.5 Asynchronous message communication between three nodes. . . . 48
7.6 Scenario reimplemented with three nodes. 49
7.7 Multicloud topology. 50
7.8 Modules in CloudML, dependencies and orchestration. 55
7.9 Usage flow in CloudML. 56

8.1 Maven dependency graph (with and without test scope). 59
8.2 Code snippet of facade used in cloud-connector. 60
8.3 Code snippet of actor model implementation (RuntimeInstane). 62
8.4 Example Maven conficuration section to include cloudml-engine. . 65
8.5 Example client (Scala) callout to cloudml-engine. 65

9.1 Template for validation. 67

iii

9.2 Account used for validation, JavaScript Object Notation (JSON). . 68
9.3 Code snippets of client used for validation (Scala). 69
9.4 Output from running validation client. 70
9.5 Screenshot of Amazon Web Service (AWS) console (left) and

Rackspace console (right) after provisioning. 71

11.1 Template including load balancer. 77

iv

List of Tables

2.1 Common providers available services 5

5.1 Comparing selected elements from CHAP. 3 with requirements. . . 32
5.2 Requirements associated with challenges. 37

8.1 Comparing lexical formats with aspects from requirements.
Weighting from zero (0) to three (3) respectively least to most
supported. 63

10.1 Result of how requirements were tackled. 74

v

Preface

I would like to thank SINTEF, and my supervisor Arne Jørgen Berre, for providing
me with this opportunity to dive into the world of Cloud Computing. I also want to
thank Sébastien Mosser for his immense amount of assistance through designing
and implementing of CloudML. And of course for his accommodation through the
writing process of this thesis, including repeated feedback. The Scala community,
Specs2 mailing list and jclouds IRC channel have been of great assistance, guiding
and helping through the implementation of CloudML.

vi

Chapter 1

Introduction

Cloud Computing [4] is gaining in popularity, both in the academic world and
in software industry. One of the greatest advantages of Cloud Computing is
on-demand self service, providing dynamic scalability (elasticity). As Cloud
Computing utilizes pay-as-you-go payment solution, customers are offered fine-
grained costs for rented services. These advantages can be exploited to prevent
web-applications from breaking during peak loads, and supporting an “unlimited”

amount of end users. According to Amazon (provider of Amazon Web Service

(AWS), a major Cloud Computing host): “much like plugging in a microwave in

order to power it doesn’t require any knowledge of electricity, one should be able

to plug in an application to the cloud in order to receive the power it needs to

run, just like a utility” [32]. Although there are still technical challenges when
deploying applications to the cloud, as Amazon emphasizes them selves.

Cloud providers stresses the need of technological advantages originating
from Cloud Computing. They emphasize how horizontal and vertical scalability
can enhance applications to become more robust. The main issue is technological
inconsistencies for provisioning between providers, e.g., AWS offer Command-

line interface (CLI) tools, while Rackspace only offer web-based Application

Programming Interface (API)s. Although most providers offer APIs these are
different as well, they are inconsistent in layout, usage and entities. The result of
this is vendor lock-in, the means used to provision an application to a given cloud
must be reconsidered if it is to be re-provisioned on another provider.

This thesis introduces the first version of CloudML, a modeling language
designed to harmonize the inconsistencies between providers, with a model-based
approach. This research is done in the context of the REMICS EU FP7 project,
which aims to provide automated support to migrate legacy applications into

1

clouds [22]. With CloudML users can design cloud topologies with models,
and while provisioning they are provided “run-time models” of resources under
provisioning, according to models@run.time approach [5].

Accompanying this thesis is a research into “state-of-the-art” technologies
and frameworks. This background information give an overview, indication the
position of cloud evolution today (April 2012). An experiment is conducted to
outline the challenges with cloud provisioning today. From these challenges a set
of requirements are constructed, which will be referred to throughout the thesis.
The goal of CloudML is to address these requirements, and this is approached
through visioning, designing and implementing CloudML. Finally an experiment
is carried out to validate the implementation of CloudML.

Publications.

• Paper presented at BENEVOL’11: Sébastien Mosser, Brandtzæg, Ei-
rik, and Parastoo Mohagheghi. Cloud-Computing: from Revolution to
Evolution (published). In BElgian-NEtherlands software eVOLution sem-

inar (BENEVOL’11), workshop: (extended abstract), , pages 1–2, Brussels,
Belgium, December 2011. VUB. This paper introduces the motivation of
the global approach for CloudML.

• Paper accepted at Cloud’12: Eirik Brandtzæg, Parastoo Mohagheghi,
and Sébastien Mosser. Towards a Domain-Specific Language to Deploy
Applications in the Clouds. In Third International Conference on Cloud

Computing, (CLOUD’12), July 2012. This paper build a deployment model
on top of the contribution in this thesis.

• Technical report for Deliverable D4.1: Gorka Benguria, Andrey Sadovykh,
Sébastien Mosser, Antonin Abhervé, and Bradtzæg, Eirik. Platform
Independent Model for Cloud (PIM4Cloud). Technical Report D-4.1, EU
FP7 REMICS, March 2012. This report describe a global overview of
the migration process of Reuse and Migration of legacy applications to

Interoperable Cloud Services (REMICS).

• Paper submitted to Cloud the MDE workshop, associated with the European

Conference on Modelling Foundations and Applications (ECMFA): Eirik
Brandtzæg, Sébastien Mosser, and Parastoo Mohagheghi. Towards
CloudML, a Model-based Approach to Provision Resources in the Clouds

2

(submitted). In Workshop on Model-Driven Engineering on and for the

Cloud (CloudMDE 2012), co-located with ECMFA’12, Lyngby, Danemark,
July 2012. Springer LNCS. This paper introduces the design and early
requirements of CloudML.

Involvement in REMICS. REMICS is a 5, 7 M e project, and part of the
7th Framework Program. Its main goal is to migrate legacy application, e.g.,
software written in COBOL or old versions of Pascal, to modern web-based
application for the cloud. Some of the partners in REMICS are SINTEF (Norway),
Dome consuling (Spain), Tecnalia (Spain), Fraunhofer FOKUS (Germany),
Netfective (France), DI Systemer (Norway) and SOFTEAM (France). My
involvement in REMICS is CloudML, which focuses on the last step in the process
of the project, which is deploying these application to cloud environments.

I have been involved in REMICS Deliverable D4.1 (PIM4Cloud, Work
package 4). I have attended two project meetings consulting PIM4Cloud and
respectively CloudML. The first one at Dome consulting, Palma de Mallorca (June
2011). The second project meeting by traveling with Hurtigruten from Tromsø to
Trondheim (September 2011).

3

Part I

Context

4

Chapter 2

Background: Cloud Computing and
Model-Driven Engineering

In this chapter the essential background topics for this thesis are introduced. The
first topic is Cloud Computing, a way of providing computing power as a service
instead of being a product. The second topic is about Model-Driven Engineering
and Model-Driven Architecture and these in relation to Cloud Computing.

2.1 Cloud Computing

Cloud Computing is gaining popularity and more companies are starting to
explore the possibilities as well as the limitation of the cloud. A good example of
cloud adaptation in a large scale scenario is when the White House moved their
recovery.gov [16] operation to a cloud infrastructure, this was estimated to save
them $750,000 at the current time, and even more on a long-term basis.

Table 2.1: Common providers available services
Provider Service Service Model
AWS Elastic Compute Cloud Infrastructure
AWS Elastic Beanstalk Platform
Google Google App Engine Platform
CA AppLogic Infrastructure
Microsoft Azure Platform and Infrastructure
Heroku Different services Platform
Nodejitsu Node.js Platform
Rackspace CloudServers Infrastructure

5

The definitions under are mainly based on definitions provided by the National

Institute of Standards and Technology (NIST) which is one of the leaders in Cloud
Computing standardization. The main providers of Cloud Computing in April
2012 are Google, Amazon with AWS [1] and Microsoft. A non-exhaustive list of
common providers is reproduced in TABLE. 2.1.

2.1.1 Characteristics

Cloud Computing is about providing computation as services [21], such as virtual
instances and file storage, rather than products. Cloud characteristics are what
define the difference between normal hosting and computing as a service.

On-demand self-service. With on-demand self-service, consumers can achieve
provisioning without any human interaction. On-demand means dynamic
scalability and elasticity of resource allocation, self-service so that users do not
need to manually do these allocations themselves. Considering an online election
system, for most of the year it will have low usage demands, but before and under
election days it will have to serve a humongous amount of requests. With on-

demand self-service the online election system could automatically be given more
resources such as memory, computation power or even increase the number of
instances to handle peak loads. The previous example has planned (or known)
peak intervals, so even though automatic handling is appealing it could be solved
by good planning. But sometimes predicting peak loads can be difficult, such as
when a product suddenly becomes more popular than first anticipated. Twitter is
a good example of a service that can have difficulties in estimating the amount
of user demand and total amount of incoming requests. For instance in the year
2011 they achieved a record of 25, 088 Tweets Per Second (TPS), triggered by a
Japanese television screening of the movie “Castle in the Sky”. Each “tweet”

essentially becomes at least one request to Twitter services. On a normal basis
the service does not have to cope with this amount of requests, so this event
was a strong and unpredicted fluctuation in day-to-day operations, and this is the
kind of scenarios that Cloud Computing can help to tackle with characteristics
such as on-demand self-service. With on-demand self-service allocation will
automatically scale upwards as popularity increases and downwards as resources
become superfluous.

6

Broad network access. When working cloud with solutions, in form of man-
agement, monitoring or other interactions it is important that capabilities are avail-
able over standard network mechanisms, supporting familiar protocols such as
Hypertext Transport Protocol (HTTP)/HTTPS and Secure Shell (SSH). So users
can utilize tools and software they already possesses or will have little difficulty
gaining, such as web browsers. This is what the characteristic broad network ac-

cess is all about, ensuring familiar mechanisms for communicating with a cloud
service. Most cloud providers also provide web based consoles/interfaces that
users can use to create, delete and manage their resources.

Resource pooling. Physical and virtual resources are pooled so they can be
dynamically assigned and reassigned according to consumer demand. Users do
not need to be troubled with scalability as this is handled automatically. This
is a provider side characteristic which directly influence on-demand self-service.
There is also a sense of location independence, users can choose geographical
locations on higher abstracted levels such as country or sate, but not always as
detailed or specific as city. It is important that users can choose at least country as
geographical location for their product deployments, for instance to reduce latency
between product and customers based on customer location or data storing rules
set by government.

Rapid elasticity. Already allocated resources can expand vertically to meet new
demands, so instead of provisioning more instances (horizontal scaling) existing
instances are given more resources such as Random-access Memory (RAM) and
Central Processing Unit (CPU). Towards the characteristic of on-demand self-

service allocation can happen instantly, which means that on unexpected peak
loads, the pressure will be instantly handled by scaling upwards. It is important to
underline that such features can be financially problematic if not limited, because
costs reflect resource allocation.

Measured service. Resources allocated in the cloud can be monitored by cloud
providers, accommodating end users with monitoring data on resources they
rent. Can be used for statistics for users, for instance to do analytical research
on product popularity or determine user groups based on geographical data or
browser usage. The providers themselves use this information to handle on-

demand services, if they notice that an instance has a peak in load or has a

7

IaaS

PaaS

SaaS

Figure 2.1: Cloud architecture service models.

noticeable increase in requests they can automatically allocate more resources
or capabilities to leave pressure. Measuring can also help providers with billing,
if they for instance charge by resource load and not only amount of resources
allocated.

2.1.2 Service models

Service models are definitions of different layers in Cloud Computing. The layers
represent the amount of abstraction developers get from each service model.
Higher layers have more abstraction, but can be more limited, while lower levels
have less abstraction and are more customizable. Limitations could be in many
different forms, such as bound to a specific operating system, programming
language or framework. There are three main architectural service models in
Cloud Computing[21] as seen as vertical integration levels in FIG. 2.1, namely
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-

as-a-Service (SaaS). IaaS is on the lowest closest to physical hardware and SaaS
on the highest level close to runnable applications.

IaaS. This layer is similar to more standard solutions such as Virtual Private

Servers (VPS), and is therefore the service model closest to standard hosting
solutions. Stanoevska-Slabeva [31] emphasizes that “infrastructure had been

available as a service for quite some time” and this “has been referred to as

utility computing, such as Sun Grid Compute Utility”. Which means that IaaS
can also be compared to grid computing, a well known computing model in the
academic world.

8

“ The capability provided to the consumer is to provision processing,
storage, networks, and other fundamental computing resources where the
consumer is able to deploy and run arbitrary software, which can include
operating systems and applications.

MELL AND GRANCE [21]

This underline the liberty this service model provides to users, but this also means
that developers need to handle software and tools themselves, from operating
system and up to their application. In some cases this is advantageous, for instance
when deploying native libraries and tools that applications rely on such as tools
to convert and edit images or video files. But in other cases this is not necessary
and choosing this service model can be manpower in-effective for companies as
developers must focus on meta tasks.

“ The consumer does not manage or control the underlying cloud in-
frastructure but has control over operating systems, storage, deployed ap-
plications, and possibly limited control of select networking components
(e.g., host firewalls).

MELL AND GRANCE [21]

Users have control over which operating system they want, in some cases users
can only pick from a set of pre-configured operating systems. It is common for
providers to include both Linux and Windows in their selections. Some providers
such as Amazon let users upload their own disk images. A similarity to VPS is that
operating systems are not manually installed, when selecting an operating system
this is copied directly into the instance pre-installed and will therefore be instantly
ready for usage. Examples of providers of IaaS are AWS Elastic Compute Cloud

(EC2) and Rackspace CloudServers.

PaaS. Cloud Computing is built to guide and assist developers through
abstractions, and the next layer in the service model is designed to aid developers
by detaching them from configuration of operating system and frameworks.

9

Developers are limited to capabilities the provider support, such as programming
languages (e.g., Java, C#), environments (e.g., Java Virtual Machine (JVM),
.NET, Node.js), storage systems (e.g., flat files, NoSQL databases, Relation

Database Management System (RDBMS)), services (e.g., load balancers, backup,
content delivery) and tools (e.g., plugin for Eclipse, command line tools) [21].
For example the first versions of Google App Engine (GAE) did only support
an internal key-value based database called BigTable, which is still their main
database. This database is transparently interfaced using their API, but also
support technologies such as Java Persistence API (JPA) and Java Data Objects

(JDO), users are bound to Java and these frameworks, and even limitations to the
frameworks as they have specific handlers for RDBMS. The disconnection from
operating system is the strength of PaaS solutions, on one hand developers are
restricted, but they are also freed from configuration, installments and maintaining
deployments. Some PaaS providers support additional convenient capabilities
such as test utilities for deployed applications and translucent scaling. In the end
developers can put all focus on developing applications instead of spending time
and resources on unrelated tasks.

Examples of PaaS providers are Google with GAE and the company Heroku
with their eponymous service. Amazon also entered the PaaS market with their
service named Elastic Beanstalk, which is an abstraction over EC2 as IaaS
underneath. Multiple PaaS providers utilize EC2 as underlying infrastructure,
examples of such providers are Heroku and Nodester, this is a tendency with
increasing popularity.

PaaS providers support deployments through online APIs, in many cases by
providing specific tools such as command line interfaces or plugins to Integrated

Development Environment (IDE)s like Eclipse. It is common for the API to have
client built on technologies related to the technology supported by the PaaS, for
instance Heroku has a Ruby-based client and Nodejitsu has an executable Node.js-
module as client.

SaaS. The highest layer of the service models farthest away from physical
hardware and with highest level of abstraction.

10

“ The capability provided to the consumer is to use the provider’s
applications running on a cloud infrastructure.

MELL AND GRANCE [21]

The core purpose is to provide complete applications as services, in many
cases end products. Google products such as Gmail, Google Apps and Google
Calendar are examples of SaaS applications. What separates SaaS applications
from other applications are the underlying cloud infrastructure. By utilizing
the five characteristics of Cloud Computing, SaaS applications achieve Cloud
Computing advantages.

It is not imposed that SaaS deployments are web applications, they can also
consist of different technologies such as Representational state transfer (REST)
APIs or SOAP services, but in any case it is most common to utilize the HTTP.
In SaaS applications end users are most likely not the companies renting from
providers, but instead the companies customers. The abstraction layer covers most
of all aspects around an application, the only exception could be customizations
and settings that end users can do albeit this can be application specific. In some
cases providers have services that affect these users as well, such as Single Sign-

on.

2.1.3 Deployment models

Deployment models define where and how applications are deployed in a cloud
environment, such as publicly with a global provider or private in local data
centers. There are four main deployment models.

Public cloud. In this deployment model infrastructure is open to the public,
so companies can rent services from cloud providers. Cloud providers own the
hardware and rent out IaaS and PaaS solutions to users. Examples of such
providers are Amazon with AWS and Google with GAE. The benefit of this model
is that companies can save costs as they do not need to purchase physical hardware
or manpower to build and maintain such hardware. It also means that a company
can scale their infrastructure without having to physically expand their data center.

11

Private cloud. Similar to classical infrastructures where hardware and operation
is owned and controlled by organizations themselves. This deployment model has
arisen because of security issues regarding storage of data in public clouds. With
private cloud organization can provide data security in forms such as geographical
location and existing domain specific firewalls, and help comply requirements set
by the government or other offices. Beside these models defined by NIST there
is another arising model known as Virtual Private Cloud (VPC), which is similar
to public cloud but with some security implications such as sandboxed network.
With this solution companies can deploy cluster application and enhance or ensure
security within the cluster, for example by disabling remote access to certain parts
of a cluster and routing all data through safe gateways or firewalls. In public

clouds it can be possible to reach other instances on a local network, also between
cloud customers.

Community cloud. Similar as private clouds but run as a coalition between
several organizations. Several organizations share the same aspects of a private
cloud (such as security requirements, policies, and compliance considerations),
and therefore share infrastructure. This type of deployment model can be found in
universities where resources can be shared between other universities.

Hybrid cloud. One benefit is to distinguish data from logic for purposes such
as security issues, by storing sensitive information in a private cloud while
computing with public cloud. For instance a government can establish by law
how and where some types of informations must be stored, such as privacy law.
To sustain such laws a company could store data on their own private cloud while
doing computation on a public cloud. In some cases such laws relates only to
geographical location of stored data, making it possible to take advantage of
public clouds that can guarantee geographical deployment within a given country.

2.2 Model-Driven Engineering

By combining the domain of Cloud Computing with the one of modeling it is
possible to achieve benefits such as improved communication when designing a
system and better understanding of the system itself. This statement is emphasized
by Booch et al. in the UML:

12

“ Modeling is a central part of all the activities that lead up to the
deployment of good software. We build models to communicate the
desired structure and behavior of our system. We build models to
visualize and control the system’s architecture. We build models to better
understand the system we are building, often exposing opportunities for
simplification and reuse. We build models to manage risk.

BOOCH ET AL. [7]

When it comes to Cloud Computing these definitions are even more important
because of financial aspects since provisioned nodes instantly draw credit. The
definition of “modeling” can be assessed from the previous epigraph, but it is also
important to choose correct models for the task. Stanoevska-Slabeva emphasizes
in one of her studies that grid computing “is the starting point and basis for Cloud

Computing.” [31]. As grid computing bear similarities towards Cloud Computing
in terms of virtualization and utility computing it is possible to use the same
Unified Modeling Language (UML) diagrams for IaaS as previously used in grid
computing. The importance of this re-usability of models is based on the origin
of grid computing, eScience, and the popularity of modeling in this research area.
The importance of choosing correct models is emphasized by [7]:

“ (i) The choice of what models to create has a profound influence on
how a problem is attacked and how a solution is shaped. (ii) Every model
may be expressed at different levels of precision. (iii) The best models are
connected to reality. (iv) No single model is sufficient. Every nontrivial
system is best approached through a small set of nearly independent
models.

BOOCH ET AL. [7]

These definition precepts state that several models (precept (iv)) on different levels
(precept (ii)) of precision should be used to model the same system. From this it
is concludable that several models can be used to describe one or several Cloud
Computing perspectives. Nor are there any restraints to only use UML diagrams

13

CIM

PIM

PSM PSM

Code Code

Figure 2.2: Model-Driven Architecture.

or even diagrams at all. As an example AWS CloudFormation implements a
lexical model of their cloud services, while CA AppLogic has a visual and more
UML component-based diagram of their capabilities.

Model-Driven Architecture. Model-Driven Architecture (MDA) is a way of
designing software with modeling in mind provided by the Object Management

Group (OMG). When working with MDA it is common to first create a
Computation Independent Model (CIM), then a Platform-Independent Model

(PIM) and lastly a Platform-Specific Model (PSM) as seen in FIG. 2.2. There are
other models and steps in between these, but they render the essentials. Beside
the models there are five different steps as explained by Singh [30]:

1. Create a CIM. This is done to capture requirements and describe the
domain. To do this the MDA developer must familiarize with the business
organization and the requirements of this domain. This should be done
without any specific technology. The physical appearance of CIM models
can be compared to use case diagrams in UML, where developers can model
actors and actions (use cases) based on a specific domain.

2. Develop a PIM. The next step aims at using descriptions and requirements
from the CIM with specific technologies. The OMG standard for MDA
use UML models, while other tools or practices might select different
technologies. Example of such Platform Independent Models can be class
diagrams in UML used to describe a domain on a technical level.

3. Convert the PIM into PSM. The next step is to convert the models into

14

something more concrete and specific to a platform. Several PSM and be
used to represent one PIM as seen in FIG. 2.2. Examples of such models
can be to add language specific details to PIM class diagram such as types
(String, Integer) for variables, access levels (private, public), method return
types and argument types. Kent, Stuart [19] emphasizes the importance of
this mapping in one of his studies:

“ A PSM is not a PIM, but is also not an implementation. [. . .] In
MDA, the main mapping is between PIM and PSM, and this is often
associated with code generation. However, this is not the only kind of
mapping required.

KENT [19]

From this it is possible to determine that a PSM is more specific to a
platform than PIM, such as programming language or environment.

4. Generate code form PSM. A PSM should be specific enough that code can
be generated from the models. For instance can class diagrams be generated
into entities, and additional code for managing the entities can be added
as well. Some diagrams such as Business Process Model and Notation

(BPMN) can generate Business Process Execution Language (BPEL) which
again can generate executable logic.

5. Deploy. The final step is based on deploying the PSM, which concludes
the five steps from loosely descriptions of a domain to a running product.
Different environmental configurations can be applied in step 4 to assure
deployments on different systems, this without changing the PSM from step
in step 3.

15

Chapter 3

State of the Art in Provisioning

There already exists scientific research projects, APIs, frameworks and other tech-
nologies which aim at consolidating, interfacing and utilizing cloud technologies.
This chapter introduces some of these concepts, and does this by dividing the
chapter into four parts:

1. Model-Driven Approaches that aims to present frameworks and projects
that utilize models on a larger scale.

2. APIs are about frameworks that connects to cloud providers, often with
multi-cloud support, these projects can be used as middleware for other
systems.

3. Deployments are about projects that do full deployment of applications,
inclusing provisioning. These are often more academic.

4. Lastly the chapter will discuss examples of cloud solutions, some real-world
examples that might not be directly related to provisioning but are important
and interesting regardless.

3.1 Model-Driven Approaches

Amazon AWS CloudFormation. [1]
This is a service provided by Amazon from their popular AWS. It give users

the ability to create template files in form of JavaScript Object Notation (JSON)
as seen in FIG. 3.1, which they can load into AWS to create stacks of resources. A
stack is a defined set of resources in different amount and sizes, such as numerous
instances, one or more databases and a load balancer, although what types and

16

1 {
2 "Description": "Create an EC2 instance",
3 "Parameters": {
4 "KeyPair": {
5 "Description": "For SSH access",
6 "Type": "String"
7 }
8 },
9 "Resources": {

10 "Ec2Instance": {
11 "Type": "AWS::EC2::Instance",
12 "Properties": {
13 "KeyName": { "Ref": "KeyPair" },
14 "ImageId": "ami-1234abcd"
15 }
16 }
17 },
18 "Outputs" : {
19 "InstanceId": {
20 "Description": "Instace ID of created instance",
21 "Value": { "Ref": "Ec2Instance" }
22 }
23 },
24 "AWSTemplateFormatVersion": "2010-09-09"
25 }

Figure 3.1: AWS CloudFormation template.

sizes of resources is ambiguous. To provision a stack with CloudFormation the
template file (in JSON format) is first uploaded to AWS which makes it accessible
from AWS Management Console.

The template consist of three main sections, (i) Parameters, (ii) Resources

and (iii) Outputs. The Parameters section makes it possible to send parameters
into the template, with this the template becomes a macro language by replacing
references in the Resources section with inputs from users. Input to the parameters
are given inside the management console when provisioning a stack with a
given template. The Resource section define types of resources that should be
provisioned, the Type property is based on a set of predefined resource types
such as AWS::EC2::Instance in Java package style. The last section, Output, will
generate output to users when provisioning is complete, here it is possible for

17

Figure 3.2: CA Applogic screenshot.

users to pick from a set of variables to get the information they need.
This template system makes it easier for users to duplicate a setup many times,

and as the templates support parameters, this process can be as dynamic as the user
design it to be. This is a model in form of lexical syntax, both the template itself
and the resources that can be used. For a company that is fresh in the world of
cloud computing this service could be considered too advance. This is mainly
meant for users that want to replicate a certain stack, with the ability to provide
custom parameters. Once a stack is deployed it is only maintainable through
the AWS Management Console, and not through template files. The format that
Amazon uses for the templates is a good format, the syntax is in form of JSON
which is readable and easy to use, but the structure and semantics of the template
itself is not used by any other providers or cloud management tooling, so it can
not be considered a multi-cloud solution. Even though JSON is a readable format,
it does not make it viable as a presentation medium on a business level.

CA Applogic. [10]
The Applogic platform is designed to manage CAs private cloud infrastruc-

ture [28]. It also has a web based interface which let users manage their cloud re-
sources as shown in FIG. 3.2 which use and benefit from a model based approach.
It is based on graphical models which support interactive “drag and drop” func-

18

Figure 3.3: Madeira Cloud screenshot.

tionalities. This interface let users configure their deployments through a diagram
with familiarities to UML component diagrams with interfaces and assembly con-
nectors. They let users configure a selection of third party applications, such as
Apache and MySQL, as well as network security, instances and monitoring. What
CA has created is both an easy way into the cloud and it utilizes the advantages
of model realizations. Their solution will also prove beneficial when conducting
business level consulting as it visualizes the structural layout of an application.
But this solution is only made for private clouds running their own controller, this
can prove troublesome for migration, both in to and out of the infrastructure.

Madeira Cloud. [20]
Madeira have created a tool which is similar to CA Applogic, but instead

of focusing on a private cloud solution they have created a tool specifically for
AWS EC2. Users can create stacks with the available services in AWS through
dynamic diagrams, as expressed in FIG. 3.3. Like CA Applogic their tool is also
proprietary, but on the other hand they support a free account which can be used
to test their service out. One would also need a AWS account as an addition.

These stacks are live representations of the architecture and can be found and
managed in the AWS console as other AWS services. They also support storing
running systems into template files which can be used to redeploy identical copies
and it should also handle configuration conflicts. For identifying servers they use
hostnames, which are bound to specific instances so end users don’t have to bother
with IP addresses.

19

Common
interface Driver - EC2

Driver -
Rackspace

Driver - Azure

EC2

Rackspace

Azure

Figure 3.4: Cloud drivers.

3.2 APIs

Extensive work have been done towards simplifying and combining cloud
technologies through abstractions, interfaces and integrations. Much of this work
is in form of APIs, mostly in two different forms. First as programming libraries
that can be utilized directly from a given programming language or environment
such as Java or Python. The other common solution is to have an online facade
against public providers, in this solution the APIs are mostly in REST form.
REST [15] is a software architecture for management of web resources on a
service. It uses the HTTP and consecutive methods such as GET, POST, PUT
and DELETE to do tasks such as retrieve lists, items and create items. APIs can
be considered modeling approaches based on the fact they have a topology and
hierarchical structure, but it is not a distinct modeling. A modeling language
could overlay the code and help providing a clear overview, but the language
directly would not provide a good overview of deployment. And links between
resources can be hard to see, as the API lacks correlation between resources and
method calls.

Driver. All the API solutions use the term “driver”, it represents a
module or component that fit into existing software and extend the support
of external connections without changing the interface. A cloud driver

connects a given software to an existing cloud provider through this
providers web based API (REST), illustrated in FIG. 3.4.

20

jclouds. [18]
This is a library written in Java and can be used from any JVM-based language.

Provider support is implemented in drivers, and they even support deployments
to some PaaS solutions such as GAE. The jclouds developers divides their library
in two different parts, one for computing powers such as EC2 and one for blob

storage like S3. Some blob storage services are accessible on the compute side
of the library such as Elastic Block Storage (EBS). They support “dry runs” so
a stack can be deployed as a simulation, not actually deploying it to a public
cloud. This is beneficial for testing deployments, and writing unit tests without
initializing connections, the library enhance this by providing a stub aimed at
testing.

libcloud. [3]
Libcloud is an API that aims to support the largest cloud providers through

a common API. The classes are based around drivers that extends from a
common ontology, then provider-specific attributes and logic is added to the
implementation. Libcoud is very similar to jclouds but the API code base is
written in Python. The API is Python-only and could therefore be considered
to have high tool-chain dependency.

Deltacloud. [2]
Deltacloud has a similar procedure as jclouds and libcloud, but with a REST

API. So they also work on the term driver, but instead of having a library to a
programming language, the users are presented with an web-based API they can
call on Deltacloud servers. As well as having similar problems as other APIs
this approach means that every call has to go through their servers, similar to a
proxy. This can work with the benefits that many middleware softwares have, such
as caching, queues, redundancy and transformations. The main disadvantages
are single point of failure (bottleneck) and version inconsistencies. Deltacloud

provide two sets of native libraries, one in Ruby and another in C, which makes
it easier to communicate with the REST API. Previously discussed jclouds also
support Deltacloud, as it would interface this with a driver as any other web-based
API.

21

3.3 Deployments

There are also some solutions that specifically aim at full deployments, versus
provisioning single instances or services these solutions provision everything
needed to fully deploy an application with a given topology.

mOSAIC. [26]
Aims at not only provisioning in the cloud, but deployment as well. They focus

on abstractions for application developers and state they can easily enable users
to “obtain the desired application characteristics (like scalability, fault-tolerance,

QoS, etc.)” [25]. There are two abstraction layers, one for cloud provisioning and
one for application-logic. The mOSAIC solution will select a proper cloud based
on how developers describe their application, several clouds can be selected based
on their properties. The mOSAIC solution will use the IaaS solutions of cloud
providers to deploy users application, then communication between these clouds
will be done using “cloud based message queues technologies”.

RESERVOIR. [29]
Resources and Services Virtualization without Barriers (RESERVOIR) is a

European Union FP7 project, aiming at cloud federation between private and hy-
brid clouds. With this a deployed application can distribute workload seamlessly
between private and public clouds based on the applications requirements. This is
done by creating Reservoir sites, one for each provider. Each site is independent
and run a Virtual Execution Environment (VEE) which is managed by a Virtual

Execution Environment Manager (VEEM). The VEEM communicate with other
VEEM and are able to do federation between clouds. Each site must have the
Reservoir software components installed, which makes it self-maintainable and
self-monitoring.

Vega. [11]
Vega framework is a deployment framework aiming at full cloud deployments

of multi-tier topologies, they also follow a model-based approach. The description
of a given topology is done by using eXtensible Markup Language (XML) files,
with these files developers can replicate a stack. The XML contain information
about the instances, such as ostype for Operating System and image-description

to describe properties of an instance such as amount of memory (req_memory).

22

They also allow small scripts to be written directly into the XML through a node
runoncescript which can do some additional configuration on a propagated
node. A resource manager keep track of resources in a system, grouping instances
after their attributes.

3.4 Examples of cloud solutions

In this section real-world examples are presented, such as popular IaaS and PaaS
solutions and other technologies which are widely used today. Some solutions
bear strong similarities to others, such as EC2 and Rackspace cloudservers, for
these only one solution will be discussed.

EC2. A central part of AWS, it was Amazons initial step into the world of
cloud computing when they released EC2 as a service as public beta in 2006.
This service is known to be the most basic service that cloud providers offer and
is what makes Amazon an IaaS provider. When users rent EC2 services they
are actually renting VPS instances virtualized by Xen. Although the instance
itself can be considered a VPS there are other factors that define it as a cloud
service. For instance cost calculations, monitoring and tightly coupled services
surrounding EC2. Examples of these services are EBS for block storage, Elastic

Load Balancer (ELB) for load balancing and Elastic IP for dynamically assigning
static IP addresses to instances.

Some of AWS other services rely on EC2 such as AWS Elastic Beanstalk and
Elastic MapReduce. When purchasing these services it is possible to manage the
EC2 instances through the EC2-tab in AWS console, but this is not mandatory as
they will be automatically managed through the original purchased service. As
mentioned earlier other PaaS solutions delivered by independent companies are
using EC2 or other AWS solutions. Examples of these are Heroku, Nodester,
DotCloud and Engine Yard which uses EC2. Example of companies using other
AWS services is Dropbox which uses S3.

EC2 is similar to services offered by other providers, such as Rackspace
cloudservers, GoGrid cloud servers and Linode Cloud. Some of the additional
services such as ELB can also be found in other providers which also offer these
capabilities as services.

23

Amazon Beanstalk. Amazon has been known for providing IaaS solutions
(EC2) and services complementing either their IaaS or the Storage as a Service

solution S3. Unlike some providers such as Microsoft and Google they had yet to
introduce a PaaS based solution, until they created Beanstalk. This is the Amazon
answer to PaaS, it is based on pre-configuring a stack of existing services such as
EC2 for computing, EBS for storage and ELB for load balancing. At the writing
moment they support Java with Tomcat and PHP deployments. The Java solution
is based on uploading war-files to Beanstalk, then the service will handle the rest
of the deployment. For PHP the deployment is based on Git repositories, when
pushing code to a given repository Beanstalk will automatically deploy the new
code to an Apache httpd instance.

24

Chapter 4

Challenges in the cloud

As cloud computing is growing in popularity it is also growing in complexity.
More and more providers are entering the market and different types of solutions
are made. There are few physical restrictions on how a provider should let their
users do provisioning, and little limitations in technological solutions. The result
can be a complex and struggling introduction to cloud computing for users, and
provisioning procedure can alternate between providers.

This chapter will outline research on which has been conducted by physical
provisioning of an example application. First the scenario will be introduced,
describing the example application and different means of provisioning in form of
topologies. Then the challenges identified from the research will be presented.

4.1 Scenario

The following scenario is chosen because of how much it resembles actual
solutions used in industry today. It uses a featureless example application meant
to fit into scenario topologies without having too much complexity. Challenges
should not be affected from errors or problems with the example application. The
application will be provisioned to a defined set of providers with a defined set of
different topologies.

BankManager. To recognize challenges when doing cloud provisioning an
example application [8] is utilized. The application (from here known as
BankManager) is a prototypical bank manager system which support creating
users and bank accounts and moving money between bank accounts and users.
The application is based on a three-tier architecture with (i) presentation tier with

25

Browser Front-end
And Back-end

(a) Single node.

Browser Front-end Back-end

(b) Two nodes.

Browser Load balancer

Front-end

Front-end
Back-end

(c) Three nodes.

Browser Load balancer

Front-end 1

Front-end 2

Front-end n

Back-end

(d) Several front-ends.

Browser Load balancer

Front-end 1

Front-end 2

Front-end n

Back-end master

Slave 1

Slave 2

Slave n

(e) Several front-ends and back-ends (slaves).

Browser
Non-system interaction

Node
Provisioned instance

Load balancer

Load balancer as a service

Connection flow n-times

(f) Legend.

Figure 4.1: Different architectural ways to provision nodes (topologies).

a web-based interface, (ii) logic tier with controllers and services and (iii) database
tier with models and entities. Three or more tiers in a web application is a common
solution, especially for applications based on the Model View Controller (MVC)
architectural pattern. The advantage with this architecture is that the lowest tier
(database) can be physically detached from the tiers above, the application can
then be distributed between several nodes. It is also possible to have more tiers,
for instance by adding a service layer to handle re-usable logic. Having more
tiers and distributing these over several nodes is an architecture often found in
Service-Oriented Architecture (SOA) solutions.

26

Topologies. Some examples of provisioning topologies are illustrated in
FIG. 4.1. Each example includes a browser to visualize application flow,
front-end visualizes executable logic and back-end represents database.
It is possible to have both front-end and back-end on the same node, as
shown in FIG. 4.1(a). When the topology have several front-ends a load
balancer is used to direct traffic between browser and front-end. The
load balancer could be a node like the rest, but in this cloud-based scen-
ario it is actually a cloud service, which is also why it is graphically different. In
FIG. 4.1(b) front-end is separated from back-end, this introduces the flex-
ibility of increasing computation power on the front-end node while spawning
more storage on the back-end. For applications performing heavy computations
it can be beneficial to distribute the workload between several front-end nodes
as seen in FIG. 4.1(c), the number of front-ends can be linearly increased n
number of times as shown in FIG. 4.1(d). BankManager is not designed to handle
several back-ends because of RDBMS, this can be solved at the database level
with master and slaves (FIG. 4.1(e)).

Execution. The main goal of the scenario is to successfully deploy BankMan-

ager on a given set of providers with a given set of topologies. And to achieve
such deployment it is crucial to perform cloud provisioning. The providers chosen
are (i) AWS [1] and (ii) Rackspace [27]. These are strong providers with a re-
spectable amount of customers, as two of the leaders in cloud computing. They
also have different graphical interfaces, APIs and toolchains which makes them
suitable for a scenario addressing multi-cloud challenges.

The topology chosen for this scenario have three nodes, FIG. 4.1(c). This
topology is advanced enough that it needs a load balancer in front of two
front-end nodes, and yet the simplest topology of the ones that benefits from
a load balancer. It is important to include most of the technologies and
services that needs testing.

To perform the actual provisioning a set of primitive Bash-scripts are
developed. These scripts are designed to automate a full deployment on a two-
step basis. First step is to provision instances:

• Authenticate against provider.

• Create instances.

• Manually write down IP addresses of created instances.

27

The second step is deployment:

• Configure BankManager to use one of provisioned instances IP address for
database.

• Build BankManager into a Web application Archive (WAR)-file.

• Authenticate to instance using SSH.

• Remotely execute commands to install required third party software such as
Java and PostgreSQL.

• Remotely configure third party software.

• Inject WAR-file into instances using SSH File Transfer Protocol (SFTP).

• Remotely start BankManager.

The scripts are provider-specific so one set of scripts had to be made for each
provider. Rackspace had at that moment no command-line tools, so a REST client
had to be constructed.

4.2 Challenges

From this example it became clear that there were multiple challenges to address
when deploying applications to cloud infrastructure. This thesis is scoped to
cloud provisioning, but the goal of this provisioning step is to enable a successful
deployment (see CHAP. 11). It is therefore crucial to involve a full deployment in
the scenario to discover important challenges.

Complexity. The first challenge encountered is to simply authenticate and
communicate with the cloud. The two providers had different approaches,
AWS [1] had command-line tools built from their Java APIs, while Rackspace [27]
had no tools beside the API language bindings. So for AWS the Bash-scripts could
do callouts to the command-line interface while for Rackspace the public REST
API had to be utilized. This emphasized the inconsistencies between providers,
and resulted in an additional tool being introduced to handle requests.

As this emphasizes the complexity even further it also stresses engineering
capabilities of individuals. It would be difficult for non-technical participants to
fully understand and give comments or feedback on the topology chosen since
important information got hidden behind complex commands.

28

Feedback on failure. Debugging the scripts is also a challenging task, since
they fit together by sequential calls and printed information based on Linux and
Bash commands such as grep and echo. Error messages from both command-line
and REST interfaces are essentially muted away. If one specific script should fail
it would be difficult to know (i) which script failed, (ii) at what step it was failing
and (iii) what was the cause of failure .

Multi-cloud. Once able to provision the correct amount of nodes with desired
properties on the first provider it became clear that mirroring the setup to the other
provider is not as convenient as anticipated. There are certain aspects of vendor
lock-in, so each script is hand-crafted for specific providers. The most noticeable
differences would be (i) different ways of defining instance sizes, (ii) different
versions, distributions or types of operating systems (images), (iii) different way
of connection to provisioned instances . The lock-in situations can in many cases
have financial implications where for example a finished application is locked to
one provider and this provider increases tenant costs. Or availability decreases
and results in decrease of service uptime damaging revenue.

Reproducibility. The scripts provisioned nodes based on command-line argu-
ments and did not persist the designed topology in any way. This made topologies
cumbersome to reproduce. If the topology could be persisted in any way, for ex-
ample serialized files, it would be possible to reuse these files at a later time. The
persisted topologies could also be reused on other clouds making a similar setup
at another cloud provider, or even distribute the setup between providers.

Shareable. Since the scripts did not remember a given setup it is impossible to
share topologies “as is” between coworkers. It is important that topologies can be
shared because direct input from individuals with different areas of competence
can increase quality. If the topology could be serialized into files these files could
also be interpreted and loaded into different tools to help visualizing and editing.

Robustness. There are several ways the scripts could fail and most errors are
ignored. They are made to search for specific lines in strings returned by the
APIs, if these strings are non-existent the scripts would just continue regardless
of complete dependency to information within the strings. A preferable solution
to this could be transactional behavior with rollback functionality in case an error

29

should occur, or simply stop the propagation and throw exceptions that can be
handled on a higher level.

Metadata dependency. The scripts were developed to fulfill a complete
deployment, including (i) provisioning instances, (ii) install third party software
on instances, (iii) configure instances and software, (iv) configure and upload
WAR-file and (v) deploy and start the application from the WAR-file . In this
thesis the focus is aimed at provisioning, but it proved important to temporally
save run-time specific metadata to successfully deploy the application. In the
BankManager example the crucial metadata is information needed to connect
front-end nodes with the back-end node, but other deployments is likely to need
the same or different metadata for other tasks. This metadata is collected in step
(i), and used in step (iii) and step (iv).

4.3 Summary

There are many cloud providers on the global market today. These providers
support many layers of cloud, such as PaaS and IaaS. This vast amount of
providers and new technologies and services can be overwhelming for many
companies and small and medium businesses. There are no practical introductions
to possibilities and limitations to cloud computing, or the differences between
different providers and services. Each provider has some kind of management
console, usually in form of a web interface and API. But model driven
approaches are inadequate in many of these environments. UML diagrams such
as deployment diagram and component diagram are used in legacy systems to
describe system architectures, but this advantage has yet to hit the mainstream
of cloud computing management. It is also difficult to have co-operational
interaction on a business level without using the advantage of graphical models.
The knowledge needed to handle one provider might differ to another, so a
multi-cloud approach might be very resource-heavy on competence in companies.
The types of deployment resources are different between the providers, even
how to gain access to and handle running instances might be very different.
Some larger cloud management application developers are not even providers
themselves, but offer tooling for private cloud solutions. Some of these providers
have implemented different types of web based applications that let end users
manage their cloud instances. The main problem with this is that there are no

30

standards defining a cloud instance or links between instances and other services
a provider offer. If a provider does not offer any management interface and want
to implement this as a new feature for customers, a standard format to set the
foundation would help them achieve a better product for their end users.

31

Chapter 5

Requirements

In CHAP. 4 challenges were identified, in this chapter those challenges will be
addressed and tackled through requirements. The requirements are descriptions of
important aspects and needs derived from the previous chapter. A table overview
will display consecutive challenges and requirements. This table is angled to the
challenges point of view to clarify requirements relation to challenges, and one
requirement can try to solve several challenges.

The requirements are expressed in FIG. 5.1. Four of these requirements have
dependencies to each other. These dependencies are shown through lines linking
the requirements together.

The requirements from CHAP. 5 are compared against selected technologies
and frameworks from CHAP. 3. These comparisons are expressed in TABLE. 5.1.

; R1 : Software reuse. There were several technological difficulties
with the scripts from the scenario in CHAP. 4. And one requirement that could
leverage several of the challenges originating from these particular issues would
be to utilize an existing framework or library. If possible it would be beneficial to
not “Reinvent the wheel” and rather use work that others have done that solve the
same problems. In the chapter CHAP. 3 multi-cloud APIs were described, such
as libcloud and jclouds. The core of this requirement is to find and experiment

Table 5.1: Comparing selected elements from CHAP. 3 with requirements.
State of the art software-reuse foundation mda m@rt lexical-template
Amazon CloudFormation Yes No Yes
CA Applogic Yes No
jclouds Yes Partly No No
mOSAIC Yes Yes No No No
Amazon Beanstalk Yes Yes No No No

32

R2 (Strong
technological
foundation)

R4 (Lexical template)

R1 (Software reuse)

R3 (Model-
Driven approach)

R6 (Multi-cloud)

R5
(Models@run.time)

(a) Requirement dependencies.

Requirement
Dependency, both ways

(b) Legend.

Figure 5.1: Requirements, including dependencies.

with different APIs to find one that suite the needs to solve some of the challenges
from CHAP. 4. One of these challenges would be complexity where such software
utilization could help to authenticate to providers and leverage understanding of
the technology. Such library could also help with feedback in case an exception
should occur, on one side because the error handling would be more thoroughly
tested and used, and another side because the library would be more tightly
bounded with R2. And for the same reasons such framework could make the
whole application more robust.

All of the API libraries from CHAP. 3 support multi-cloud so they can interact
with several providers over a common interface, this would be a mandatory
challenge to overcome by this requirement. Some research have already been
done to indicate what their purpose is, how they operate and to some extent how
to use them. The approach here is to select libraries or framework that could
match well with a chosen R2 or help fulfill this requirement. Then the chosen
APIs must be narrowed down to one single API which will be used in the solution
application.

; R2 : Strong technological foundation. Beside the benefits of
R1 (software reuse) there could be even additional gain by choosing a solid
technology underneath the library, e.g., programming language, application

environment, common libraries, distribution technologies. The core of this
requirement is to find, test and experiment with technologies that can solve
challenges and even give additional benefits. Such technologies could be anything

33

from Java for enterprise support to open source repository sites to support software
distribution. It is also important that such technologies operate flawlessly with
libraries or frameworks found and chosen from the requirement of R1 (software

reuse). The technology chosen should benefit the challenge of robustness. It could
also help to solve other challenges such as metadata dependency by introducing
functionality through common libraries or some built in mechanism.

Solid technologies have to be considered by several aspects, such as (i) ease
of use, (ii) community size, (iii) closed/open source, (iv) business viability,
(v) modernity and (vi) matureness. Another important aspect is based on library
or framework chosen for the R1 (software reuse) requirement, as the library
will directly affect some technologies such as programming language. Different
technologies have to be researched and to some degree physically tried out to
identify which aspects they fulfill.

Types of technologies are undefined but some are mandatory such as
(i) programming language (e.g., Java, C#) and (ii) application environment (e.g.,
JDK, .NET). Beside this it is also important to state which type of application the
solution should be, (i) GUI application, (ii) API in form of public Web Service
or (iii) API in form of native library. The amount of different technologies is
overwhelming so looking into all of them would be impossible, therefore they
must be narrowed down based on aspects such as popularity.

; R3 : Model-Driven approach. Models can be reused to multiply a setup
without former knowledge of the system. They can also be used to discuss, edit
and design topologies for propagation. These are important aspects that can help
to leverage the challenge of complexity.

Main objective is to create a common model for nodes as a platform-
independent model [24] to justify multi-cloud differences and at the same time
base this on a human readable lexical format to address reproducibility and make
it shareable.

Unlike the other requirements this is a non-physical need, and as seen in
FIG. 5.1 there are no dependencies from or to this requirement. But other
requirements such as R4 are directly based on this one.

In the implementation there will be four different models:

1. The lexical template.

2. Nodes from the template represented in the implementation.

34

3. Nodes converted into instances for provisioning.

4. Instances in form of run-time instances (models@run.time).

Of these the first is influenced by the R4 requirement and the last by the R5

requirement.

; R4 : Lexical template. This requirement is tightly coupled with that of
R3 (model-driven approach) but narrowed even further to state the importance of
model type in regard to the model-driven approach. When approaching a global
audience consisting of both academics groups and commercial providers it is
important to create a solid foundation, which also should be concrete and easy
to both use and implement. The best approach would be to support both graphical
and lexical models, but a graphical annotation would not suffice when promising
simplicity and ease in implementation. Graphical model could also be much more
complex to design, while a lexical model can define a concrete model on a lower
level. Since the language will be a simple way to template configuration, a well
known data markup language would be sufficient for the core syntax, such as
JSON or XML.

Textual templates that can be shared through mediums such as E-mail or
Version Control System (VCS) such as Subversion or Git. This is important for
end users to be able to maintain templates that defines the stacks they have built,
for future reuse.

The type of direct model representation of topologies will have great impact
on the solution application. As described in CHAP. 5 this representation should be
lexical, but there are several different styles and languages to achieve this. Some
examples of these languages are (i) XML, (ii) JSON, (iii) YAML, (iv) Simple

Declarative Language (SDL) or (v) Ordered Graph Data Language (OGDL).
As shown in FIG. 5.1 there is a two-way dependency between this requirement
and R2 (strong technological foundation) requirement. This dependency can
have impact both ways, but unlike the other dependencies in FIG. 5.1 there exist
bindings all the four precedings in most languages and systems. Templates could
even be stored as any binary type of serialization, but this might not be as sufficient
as lexical types, more on this in CHAP. 7.

; R5 : Models@run.time. Models that reflect the provisioning models
and updates asynchronously. As identified by the scenario in CHAP. 4 metadata
from provisioning is crucial to perform a proper deployment in steps after

35

the provisioning is complete. One way to solve this issue is by utilizing
Models@run.time (M@RT), which is the most obvious choice in a model-driven
approach. Models will apply to several parts of the application, such as for
topology designing and for the actual propagation. Models are often used to
clarify understanding of a system, a run-time model is similar to such model,
but focuses on a system in operating state.

The models@run.time approach [5] is meant to support any deployment
system which should be run sequentially after a complete provisioning. For such
deployment to be successful metadata from the provisioning could be needed, so
the core idea is to fetch this kind of data directly from models@run.time.

The approach for this requirement is to find sufficient solutions for such
models, and at the same time keep in mind the dependency towards R2 (strong

technological foundation). There are several different approaches that could be
made when implementing these models, such as using (i) observer pattern,
(ii) command pattern, (iii) actor model or (iv) publish-subscribe pattern. It
is also possible to combine one or several of these approaches. What needs to
be done here is to identify which approaches that are most sufficient in regards
to (i) finding an approach that solved the requirement, (ii) sustain constraints in
regard of dependencies as seen in FIG. 5.1, and (iii) identify approaches that can
be combined and what benefits this would give.

; R6 : Multi-cloud. One of the biggest problems with the cloud today is
the vast amount of different providers. There are usually few reasons for large
commercial delegates to have support for contestants. Some smaller businesses
could on the other hand benefit greatly of a standard and union between providers.
The effort needed to construct a reliable, stable and scaling computer park or
data center will withhold commitment to affiliations. Cloud Computing users are
concerned with the ability to easily swap between different providers, this because
of security, independence and flexibility. CloudML and its engine need to apply to
several providers with different set of systems, features, APIs, payment methods
and services. This requirement anticipate support for at least two different
providers such as AWS and Rackspace.

36

Table 5.2: Requirements associated with challenges.
Challenge Addressed by
Complexity R1 (software reuse) and

R3 (model-driven approach)
Feedback on failure R1 (software reuse)
Multicloud R1 (software reuse)
Reproducibility R4 (lexical template)
Sharable R4 (lexical template)
Robustness R1 (software reuse) and

R2 (strong technological foundation)
Metadata dependency R5 (models@run.time) and

R2 (strong technological foundation)

5.1 Comparison

The requirements defined in this chapter are designed to tackle one or more of
the challenges described in CHAP. 4. All of the challenges are associated with
requirements, as seen in TABLE. 5.2. Three of the challenges are tackled by
more than one requirement, and three other requirements tackle more than one
challenge. e.g., R1 (software reuse) tackle four different challenges including
complexity, while the challenge complexity is tackled by both R1 (software reuse)
and R3 (model-driven approach).

5.2 Requirement dependencies

Some of the requirements have dependencies on each other, for instance
R1 (software reuse) is about finding and utilizing an existing library or framework,
but this will also directly affect or be affected by programming language
or application environment chosen in R2 (strong technological foundation)
requirement. There are three requirements, (i) R5 (models@run.time),
(ii) R1 (software reuse) and (iii) R4 (lexical template), where all have a two-
way dependency to the (iv) R2 (strong technological foundation) requirement, as
illustrated in FIG. 5.1. These dependency links will affect the end result of all the
four previous mentioned requirements. For example a library chosen in precept
(ii) would affect precept (iv), which again would affect how precept (i) will be
solved. It could also affect precept (iii) as different textual solutions can function
better in different environments. Since R2 (strong technological foundation) is a
central dependency (FIG. 5.1) this requirements is weighted more than the others.

37

Part II

Contribution

38

Chapter 6

Vision, concepts and principles

In this chapter the core idea of CloudML will be presented. The concept and
principle of CloudML is to be an easier and more reliable path into cloud
computing for IT-driven businesses of variable sizes. The tool is visioned to parse
and execute template files representing topologies and provision these as instances
available in the cloud.

The vision of CloudML is reflected through FIG. 6.1 which gives an overview
of the procedure flow in and around CloudML.

Domain of CloudML. Inside FIG. 6.1 there is an area pointed out as CloudML,
this area contain components necessary to implement in order to fulfill the vision
as a whole. Every part within the designated area is some physical aspect in the
implementation, and therefore core parts of the contribution.

The actors. In FIG. 6.1 there are three actors, (i) business person representing
someone with administration- or manager position which defines and controls
demands for application functionality and capabilities. The next actor, (ii) cloud
expert has a greater knowledge of the cloud domain e.g., cloud providers, services
these offer, limitations, API support and prices. The last actor, (iii) user is a person
which directly utilize CloudML to do provisioning. This physical person may or
may not have the role of cloud expert, hence the cloud expert extends from the
user actor.

Application and topologies. The business person is in charge of the application,
he/she has a need for an application that can fulfill certain tasks, and to handle
these tasks application demands are made. The cloud expert use the requirements

39

Business person

Cloud Expert

User

Application

Topology 1 Topology 2 Tn

Template 1 Template 2 Template n

Engine

EC2

Rackspace

Models@run.time

In charge of

Defines

Writes

Se
lec

ts

Returns

Dep
lo

ye
d on

Modeled as

Feeds

Interacts with

Yields

Figure 6.1: “Big picture”, overview of CloudML procedure flow.

sketched by the business person to define and design node topologies which
tackles the application demands. A topology is a map of nodes connected together
in a specific pattern, defined by the cloud expert. In a topology there is also
information about node attributes e.g., CPU power and RAM sizes. He/she might
create several topologies to fulfill the application demands.

Templates. The next step is to create templates based on the topologies, this is
done by the cloud expert. A template is a digital reflection of a topology including
the attributes and some additional information such as node names and template
labeling. It is also possible to define more than one topology within a single
template.

Engine. When the cloud expert have designed and created the necessary
templates the next actor, user, will continue the procedure. The user selects
the template and feeds them into the engine. The engine is the core of the
implementation, handling several steps and executing most of the CloudML logic.

40

The engine operates according to five different steps:

1. Convert the template files into a native format for later use.

2. Convert pure nodes into instances ready for provisioning.

3. Connect to all the desired providers.

4. Propagate the instances.

5. Produce models@run.time of the instances being propagated.

Providers. The engine interacts with the providers, in FIG. 6.1 EC2 and
Rackspace are selected as examples, but any cloud provider that will be supported
by CloudML can be utilized. As discussed in CHAP. 3 and CHAP. 4 different
providers implement different solutions for communication e.g., for provisioning
nodes, managing nodes and services or terminating instances. For the engine to
interact with a set of different providers, a tool, library or framework is needed.
This additional software can connect to the different providers through a common
interface.

Models@run.time. The last part of this implementation of CloudML (see
CHAP. 11) is to reflect provisioned instances with models@run.time. These
models are returned to the user when provisioning starts, and when attributes
and statuses about instances are updated the user is notified about these updates
through the models. In the implementation the models can extend from or
aggregate instances.

41

Chapter 7

Analysis and design - CloudML

In the previous chapter, CHAP. 6, the core vision of CloudML was presented,
including descriptions of surrounding elements, e.g., actors and topologies. In
this chapter the focus is narrowed down to the design and considerations of the
implementation that constitutes CloudML.

7.1 Meta-model

In this section the meta-model of CloudML will be presented. The meta-model
is visualized in FIG. 7.1, and will be described through a specific scenario. The
scenario also describe parts of the implementation design through how it is used.

Scenarios introduction. CloudML is introduced by using two different scen-
arios where a user named “Alice” is provisioning the BankManager application
from CHAP. 4 to the AWS cloud. It is compulsory that she possesses an AWS
account in advance of the scenario. This is essential information needed for the
scenario to be successful, and since she is indirectly using AWS APIs, she must
also have security credentials, i.e., Access Key ID and Secret Access Key.

The roles assumed by Alice in this scenario, regarding FIG. 6.1, are both
cloud expert and user. She will define the topologies, create the templates and
use the engine to provision her models. In addition to these roles she is also
partly application designer/developer, because of tight coupling between running
instances and application deployment.

Authentication. She associates Access Key ID and Secret Access Key with
Credential and Password in FIG. 7.1. Credential is used to authenticate

42

UserLibrary

CloudMLEngine

+build(a: Account, t: List[Template]):
List[RuntimeInstance]

+status(r: RuntimeInstance, s: Status)

Account
+name: String*

Credential
1

KeyPair
+public: String

Password
+identity: String

+credential: String

Connector
* 1

AmazonEC2 Rackspace

Instance
templateName:

String

RuntimeInstance

+update(s: Status)
+getStatus()

: Status

*

RuntimeProp
*

PublicIP
+value: Address

Status
+value: String

PrivateIP
+value: Address

Template
+name: String *

Node
+name: String

*

Property
*

Location
+value: String

Disk
+min: String

Core
+min: String

RAM
+min: String

Figure 7.1: Meta model of CloudML.

her to supported providers through Connector. The Connector is a common
interface against supported providers. This component of CloudML is directly
associated with R6 (multi-cloud). Credential is in this case in the form of
an Access Key ID (random GUID), but with other providers it might be in
another form, e.g., a username for Rackspace. Although the form is different, the
physical object type (String) is the same.

7.1.1 Single node topology

Initially Alice is using the topology shown in FIG. 4.1(a). This topology
introduces a single node, which hosts every tier of the application. This is not
an uncommon topology for development purposes.

Topology considerations. Alice establishes a single-node based topology, as
seen in FIG. 4.1(a). Since this single node handles both computation and storage,
Alice decides to increase capabilities of both processing (number of Cores) and
Disk size on the Node. Both of these attributes are incremented because the
instance hosts the main application as well as the database.

43

:Template
name=“template1”

:Node
name=“node1”

cores=2
disk=500

(a) Template with nodes.

:Instance
name=“node1”

cores=2
disk=500

templateName=“template1”

(b) Instance.

Figure 7.2: Object diagram of scenario with one node.

The approach of using one single node is good in terms of simplicity, since
all important components of the application are located in one single place. Other
advantages distinguish themselves as well, such as network connections where the
address of other components are determined to be “this computer” (localhost).

Building templates. In the end Alice inserts all data about topologies into a
Template. The template include physical descriptions of the Node, and a list
of the type Property for the node. The Node has a name used to reference
the node under provisioning. The properties the node can have are configurations
of attributes on a set of given capabilities. These configurations are what define
what type of tasks a node is suitable for. In Alice’s case the node has increased
two important attributes to support both higher computation demand and storage
capabilities, i.e., 2 cores and 500 Gigabyte (GB)1 in hard drive size. By not
altering any other attributes on the respective nodes, they will be set to minimal
values. This is a positive expectation, since the nodes will handle specific tasks,
which does not demand enhancing of other attributes.

Provisioning. With these models Alice initializes provisioning by calling
build on CloudMLEngine, providing Credential and Template. This
starts the asynchronous job of configuring and creating Instances based on
Nodes. In FIG. 7.2(a) an object diagram describe the initial configuration at
run-time, after CloudML has interpreted the templates. The instance produced
by the template and node is in the form of a single object, as represented by

1Size is expressed in GB, but measurement can change depending on implementation of
R1 (software reuse).

44

:User :CloudML r:RuntimeInstance :CC

build(account,List(template))
Initialize()

List(r)
getStatus()

"Configuring"
update("Building")

buildTemplates(r)

getStatus()
"Building"

update("Starting")

provision(r)
getStatus()
"Starting"

update("Started")

getStatus()

"Started"

Figure 7.3: CloudML asynchronous provisioning process (Sequence diagram).

the object diagram in FIG. 7.2(b). Instance only refer to template by a
String, templateName. This is semantically correct because the template is
a transparent entity in the context of provisioning, and is only used as a reference.
Instance is also an internal element in CloudML, and might not have to be
indirectly or directly exposed to end users.

RuntimeInstance is specifically designed to complement Node with
RuntimeProperties, as Properties from Node still contain valid data.
When CloudMLEngine start provisioning, a RuntimeInstance is created
immediately, and returned to Alice. These are M@RT within CloudML, designed
to provide asynchronous provisioning according to R5 (models@run.time). They

45

are reflections of Instance, and they aggregate instances.
The method call to build is described in FIG. 7.3. In this figure

RuntimeInstance is returned directly to Alice, because these are asynchron-
ous elements within CloudML, which end users can gather information through.
The actor CC within this figure is an abbrevation of CloudConnector. This is
emphasized within FIG. 7.3 through getStatus method calls. Instance is
never visualized, this is because it is an internal format within CloudML and does
not need to be presented in the sequence diagram,

When the Node is provisioned successfully and sufficient meta-data is
gathered, Alice can start the deployment. CloudML has then completed its scoped
task of provisioning.

7.1.2 Three nodes topology

For scalability and modularity the single-node approach is restraining, i.e., it
does not scale very well, and does not benefit from cloud advantages. If the
application consumes too much CPU power, this slows the application totality
down and decreases usability. There is no strong link between CloudML and
the application, but to maintain scalability some measures must be manually
developed into BankManager. So the initial application code includes support for
work load distribution through application design and deployment considerations.
In BankManager these measures consists of manually setting physical database
address before deploying the application.

In the previous described scenario, Alice provision BankManager to one
single instance on AWS. This setup is sufficient for development purposes, but
major advantages could be gained through the opportunity of horizontal scalability
(scale out). There are distinct benefits to this. If Alice deployed an application
that should suddenly, rapidly and unexpectedly gain popularity, her current setup
(one single node) will not be sufficient. In case of such event Alice should change
her topology from her initial one seen in FIG. 4.1(a) with one node, to that of
FIG. 4.1(c) with three nodes. Or even the topology seen in FIG. 4.1(d), with
“unlimited” amount of nodes. This topology is more advanced and utilizes the
cloud on a higher level. It has three nodes, two for the application logic (front-
end) and one for the database (back-end). In front it has a load balancer, which is
a cloud service ensuring that requests are spread between front-end nodes based
on predefined rules. Even though this service is meant for balancing requests to

46

:User :CloudML r1:RI r2:RI r3:RI :CC

build(account,List(template))
Initialize()

Initialize()

Initialize()

List(r1, r2, r3)
update("Building")

update("Building")

update("Building")

buildTemplates(r1, r2, r3)

update("Starting")

update("Starting")

update("Starting")

Figure 7.4: Provisioning three nodes provisioning.

front-ends, it can actually be used internally in between local nodes as well.

New template. Alice changes her topology by editing her existing Template
to contain three nodes instead of one. She also changes the node attributes to
suite their new needs better, i.e., increasing amount of Cores on front-end, and
increased Disk for back-end Node. The characteristics Alice choose for her
Nodes and Properties are fitted for the chosen topology. All Properties
are optional and thus Alice does not have to define them all.

Rebuild. Then she executes build on CloudMLEngine again, which will
provision the new nodes for her. She will get three new nodes, and the
previous provisioned nodes must be manually terminated (more about this in
CHAP. 11). The outline of how nodes are provisioned is shown in FIG. 7.4.
The asynchronous behavior is expressed in FIG. 7.5. This behavior is similar to
that shown in FIG. 7.3, but show how communication can flow with increased

47

:User :CloudML r1:RI r2:RI r3:RI :CC

getStatus()
"Starting"

provision(r1)

update("Started")

update("Started")

getStatus()

"Started"
getStatus()
"Starting"

provision(r2)
getStatus()
"Starting"

update("Started")

getStatus()

"Started"
getStatus()

"Started"
getStatus()
"Starting"

createLoadBalancer(r1, r2, r3)

Figure 7.5: Asynchronous message communication between three nodes.

amount of RuntimeInstances. In the figure RI is an abbreviation of
RuntimeInstance, to save space. For the same purpose, CC is an abbreviation
of CloudConnector. It is also split into three parts expressing different steps,
(i) provisioning, (ii) node communications and (iii) how a load balancer service
is established. This figure is similar to FIG. 7.3, but with three nodes instead of
one. Both percept (i) and (ii) are found in FIG. 7.3. Another difference is that
User does more calls to CloudML, which express how statuses between RIs are
updating.

When connecting front-end instances of BankManager to back-end instances
Alice must be aware of the back-ends PrivateIP address, which she will
retrieve from CloudML during provisioning according to M@RT approach. This

48

:Template
name=“template1”

:Node
name=“node2”

cores=2

:Node
name=“node1”

cores=2

test1:Node
name=“node3”

disk=500

(a) Template with nodes.

:Instance
name=“node1”

cores=2
templateName=“template1”

:Instance
name=“node2”

cores=2
templateName=“template1”

:Instance
name=“node4”

disk=500
templateName=“template1”

(b) Instance.

Figure 7.6: Scenario reimplemented with three nodes.

was not necessary for the initial scenario setup, but could still be applied as good
practice.

Three nodes summary. The benefits of a topology where the application is
distributed over several nodes is the scalability and modularity, which were
lacking in the single-node topology. For instance, if the user demand should
rapidly increase, Alice could change her topology to provision more front-end
nodes as seen in FIG. 4.1(d). This could be done presumably without greater
changes to origin application, since the application is initially designed for such a
distributed topology.

An object diagram of the topology is shown in FIG. 7.6(a). There is nothing
that concretely separate front-end nodes from back-end nodes, this can only be
determined from node name or what attributes are altered. The separation is
completely up to Alice when doing the deployment, i.e., nothing in CloudML will
restrain or limit Alice when it comes to work load distribution between nodes.

As with the instances in FIG. 7.2(b) the instances in FIG. 7.6(b) are reflections
of the nodes (and template) in FIG. 7.6(a). The template name is referenced within
each Instance for the reasons mentioned earlier.

49

Browser

AWS

Load balancer

Front-end 1

Front-end 2

Front-end n

Back-end

Back-end master

Rackspace

Slave 1

Slave 2

Slave n

Figure 7.7: Multicloud topology.

7.1.3 Multi-cloud provisioning

Alice could later decide to use another provider, either as replacement or
complement to her current setup, because of availability, financial benefits or
support. To do this she must change the provider name in Account and call
build on CloudMLEngine again, this will result in an identical topological
setup on a supported provider. UserLibrary in FIG. 7.1 visualizes that
Account and Template are physical parts maintainable by the user.

The build method support provisioning of several templates to one account
(same provider). There is also a constraint/limitation, a set of templates can
not be simultaneously cross-deployed to different providers, i.e., not possible
to define cross-provider (multi-cloud) nodes in a single topology. This is for
the sake of tidiness, clarity and technical limitations. CloudML support multi-
cloud provisioning, just that such functionality is achieved by sequential re-
provisioning, which will not retain a full multi-cloud deployment.

AWS and Rackspace combined. To describe the layout of a multi-cloud
provisioning with CloudML, a scenario is invented and a complementary figure
is crafted. In the new scenario Alice creates a topology spanning over two
providers, as seen in FIG. 7.7. In the figure the user connects to a load

50

balancer, then the request is distributed between a set of front-ends which
will retrieve appropriate data from a back-end. This is similar to FIG. 4.1(c)
with three nodes. Everything so far is under the realm of AWS, including a
load balancer, n amount of nodes for front-end computation and one
back-end node. In this case the back-end does not hold any data, instead it
is connected to another node cross provider to Rackspace. On Rackspace a set
of nodes are built to hold data, one back-end master manages a set of n
slaves. The slave nodes hold all data.

7.2 Technological assessments and considerations

7.2.1 Programming language and application environment.

When considering programming language and application environment the
important aspects are the ones mentioned in R2 (strong technological foundation),
(i) ease of use, (ii) community size, (iii) closed/open source, (iv) business viability,
(v) modernity and (vi) matureness. For the implementation to be a successful
approach towards CloudML the aspects chosen must also be relevant for future
improvements. At the same time the aspects chosen must be appealing to existing
communities of interest, without this it will not gain the footing it needs. The most
important aspects are therefore precept (ii), (v) and (vi).

7.2.2 Asynchronous information gathering and distribution.

The design. When a node is being propagated it changes type from Instance

to RuntimeInstance, which can have a different state such as Configuring,
Building, Starting and Started. Considerations for implementation are described
in SEC. 7.3.

When a RuntimeInstance reaches Starting state the provider has
guaranteed its existence, including the most necessary metadata. When all nodes
reaches this state the task of provisioning is concluded.

Patterns. Provisioning nodes is by its nature an asynchronous action that can
take minutes to execute. For CloudML to compensate with this asynchronous
behavior several approaches could be made, as mentioned in CHAP. 5, i.e.,
observer pattern, command pattern, actor model, or publish-subscribe pattern.

51

Patterns tightly bound to using an object-oriented language for R2 (strong

technological foundation). The core idea of integration and benefits of these
approaches are:

Observer pattern. The essence of this pattern is a one-to-many distribution of
events between objects. This can be explained with a restaurant as an
example, with one chef and two waiters. The chef is an observable and the
two waiters are observers. The chef does some work (cooking), and when
he or she is complete with a dish all observers are notified. The observers
receive this event and can act upon it, e.g., the first waiter ignores the dish,
because it does not belong to any of his or her tables, while the other waiter
takes the dish to appropriate table.

Command pattern. Is about encapsulating data and logic. Implementations have
a known method, e.g., execute which comes from an interface. So logic
could be transparent when invoking them. In the restaurant-example one
can consider a general waiter to be the interface, and the two waiters would
each be separate implementations, e.g., TableAToC and TableDToH. When
the chef invokes the method execute on any type of waiter, he or she does not
need to know anything about their implementation, each waiter will know
by themselves which table to visit.

Actor model. Solves the problem with asynchronous communication through
passing messages in between actors. These messages are decoupled from
the sender, resulting in proper asynchronous communication. Actors can
also create new actors. With the restaurant-example one can imagine all
three elements, i.e., chef, first and second waiter, to be individual actors.
The chef must know about the first waiter, but the waiters do not necessarily
need to know about each other. When a meal is done the chef can inform
the correct waiter (the one associated with the correct table). The benefit
here is that the message is decoupled and asynchronous, so the chef can
start working on the next meal without waiting for the waiter to return.

Publish-subscribe pattern. This pattern is very similar to observer pattern in
behavior, but is more focused on message distribution logic. Compared
to observer pattern the observable are considered a publisher and observers

are called subscribers. When a publisher sends a message it does not send
it directly to any receivers, instead there is a filter-based logic which selects

52

receivers based on condition they set themselves. In the restaurant example,
similar to that with observer pattern, the chef is publisher and both waiters
are subscribers. When the chef completes a meal he or she notify the
waiters based on their conditions, e.g., the first waiter listen for events of
type TableA, TableB and TableC. If the finished meal was assigned for table
A the first waiter would get the message.

Of these solutions the most promising one is actor model because it is more
directly aimed at solving asynchronous communication. The other solutions can
provide assistance by accommodating communications through events, but by
them selves they do not solve the issue of slow provisioning. An interesting
approach is to combine the actor model with one of the patterns. By doing this the
behavior functionality is combined with the asynchronous benefits within the actor
model. Of the previous mentioned patterns only observer and publish-subscribe

patterns fit well with designed behavior of CloudML. Of these publish-subscribe

is the most scalable and dynamic one (at run-time), but also the most complicated.
When combining the actor model with such pattern it is important to keep the
implementation as simple as possible, without withholding functionality. Hence
the best solution for CloudML is to combine actor model with observer pattern.

The actor model can be implemented in many different ways, even on
different tiers. Both requirement R2 (strong technological foundation) and
R1 (software reuse) can assist with either a built-in functionality in the language,
environment or an external library or framework. The observer pattern can
be implemented in many ways, e.g., using java.util.Observer and
java.util.Observable.

7.2.3 Lexical format.

Requirement R4 (lexical template) from CHAP. 5 consists of two important core
elements. The first is important aspect, i.e., functional demands the format must
fulfill, such as how popular it is and how well it is supported by programming
languages. Second element is that of data format, i.e., the actual language used to
serialize data. This last element is not important for design, and will be introduced
and further described in SEC. 8.1 (CHAP. 8). The important aspects of a lexical
format for CloudML are:

• Renowned among software developer communities, industry and the
academic domain. The language will be used directly by these parties, so it

53

is beneficial that they are familiar with the syntax.

• Integrates (supporting libraries) with most common existing technologies.
The range of R2 (strong technological foundation) should not be limited by
the format.

• Human-readable, to some extent. End users needs to create and edit
these files, often by hand. Therefore it must be readable and manually
maintainable.

• Function with web-services and web-based technologies. CloudML is a
language designed for cloud environments, so choosing a format that works
well on the web is crucial.

7.3 Modules and application flow

CloudML is divided into four main modules (FIG. 7.8). This is to distribute
workload and divide CloudML into logical parts for different tasks.

Engine. The main entry point to the application is Engine. This means it does
not have to be initialized and there exists only one instance of it. Interaction
between user and Engine is expressed in FIG. 7.9 where the user will initialize
provisioning by calling Engine. Engine will also do orchestration between
the three other modules as shown in FIG. 7.8(b). Since Cloud-connector
is managed by Engine, other actions run against instances are done through
Engine. The first versions of cloudml-modules did not use Engine as
orchestrator but instead relied on each module to be a sequential step, this proved
to be harder to maintain and also introduced cyclic dependencies. Engine has
dependencies to all the other modules, as expressed in FIG. 7.8(a).

Kernel. CloudML specific entities are kept in Kernel, such as Node and
Template. This is some of the core parts of the Domain-specific language

(DSL), hence it is called Kernel. The logical task of Kernel is to map JSON
formatted strings to Templates including Nodes. Accounts are separate
parts that are parsed equally as Templates, but by another method call. All
this is transparent for users as all data will be provided directly to Engine which
will handle the task of calling Kernel correctly. In FIG. 7.8(a) is it shown that

54

Engine
Entry point.

Orchestration.

Kernel
Node domains.
Converts JSON

to Node Entities.

Repository
Instance domains.

Convert Nodes
to Instances.

Cloud-connector
Connects to

providers (jclouds).

(a) Application module dependencies.

Engine

Kernel

Repository

Cloud-connector

2

3
41

5

(b) Application module orchestration/flow. The numbers
indicate order of sequential flow.

Module
Application modules

Dependency Entry

(c) Legend.

Figure 7.8: Modules in CloudML, dependencies and orchestration.

Kernel has no dependency to other modules, while all the other modules depend
on Kernel. This stresses the fact that Kernel is the most fundamental part,
closest to the DSL. According to FIG. 7.8(b) Kernel is the first module to be
called by Engine, as it will convert incoming text (String) to internal format of
Nodes.

Repository. Instance are entities within Repository, these are equivalent
to Nodes in Kernel, but are specific for provisioning. Repository will do
a mapping from Nodes (including Template) to Instances. Future versions of
Repository will also do some logical superficial validation against Node

properties. At the writing moment (April 2012) it is not possible to demand load
balancers (as a service) on Rackspace for specific geographical locations.

55

User

CloudML

Engine

Cloud-connector

RuntimeInstance

Rackspace

EC2

Cloud providers

Figure 7.9: Usage flow in CloudML.

Cloud-connector. The connections to providers are established through the
module Cloud-connector. This module uses an external software allowing
CloudML to connect to several providers through a common interface. This
software fulfills R1 (software reuse). The connections to providers are expressed
in FIG. 7.9. As expressed in FIG. 7.8(a) Cloud-connector depend on
both Kernel and Repository. These dependencies match its task, as it
must have knowledge about both Templates and RuntimeInstance. This
module is the last step before returning to the user, as seen in FIG. 7.8(b).
In FIG. 7.9 it is expressed that Cloud-connector initializes the actors
(RuntimeInstance) which are provided to the User.

56

Chapter 8

Implementation/realization: The
cloudml-engine library

In the previous chapter the design of CloudML was introduced. In this chapter the
implementation of this design will be presented and described. First section is a
technical overview of some of the general solutions within the implementation.
The rest of the chapter is split into different sections, one for each important
part of the implementation. Topics are about (i) sub-modules and their tasks,
(ii) the dependency system, (iii) communication with cloud providers, (iv) M@RT
through actor model and (v) data serialization.

8.1 Technology overview

CloudML is implemented as a proof-of-concept framework [9] (from here known
as cloudml-engine). The implementation, cloudml-engine, is based on state-of-

the-art technologies that appeal to the academic community. Technologies chosen
for cloudml-engine are not of great importance to the concept of CloudML itself,
but it is still important to understand which technologies are chosen, what close
alternatives exists and why they are chosen.

Language and environment. The importance of a programming language and
environment were described in SEC. 7.2. These are core ideas to fulfill R2 (strong

technological foundation), emphasizing the importance of a strong foundation.
Here is a list describing some of the languages and environments considered:

• Java (JVM)

57

• JavaScript (Node.js)

• Scala (JVM)

• Python

• C# (.NET)

Languages in this list are introduced because of their overall popularity. Some
were introduced despite this, such as Node.js, which is brought in as an
consideration because of the abilities to operate with JSON, cloud interaction and
modernity.

Based on these considerations Scala is a good choice, it fulfills the core ideas
and match the requirement R2 (strong technological foundation):

Ease of use. Scala is a state-of-the-art language with many technological advant-
ages, e.g., supporting both functional and object-oriented programming.
With both paradigms, imperative programmers such as Java developers as
well as functional programmers such as Clojure developers would be famil-
iar with the language design.

This language emphasizes on functional programming which is leveraged
in the implementation. Scala has a built in system for actor model [17],
which is utilized in the implementation. This also assists in relation to
R5 (models@run.time).

JVM is a popular platform, as the main platform for Java. Scala runs on the
JVM, and support all the libraries and work put into Java over the years can
be utilized directly by Scala.

Community size. This language is gaining popularity among both the academic
and enterprise domain.

Closed/open source. Scala is open source.

Modernity. The reason not to use plain Java is because Scala is an appealing
state-of-the-art language. The language is under constant development and
new features and enhancements keeps improving the language.

Matureness. Compatible with Java and libraries written in Scala can be
interacted with by Java as well. This means that even though Scala is chosen
for the implementation of CloudML, it can still be used by other languages
supported by the JVM, e.g., Java, Groovy and Clojure.

58

(a) Dependency-graph with test-scope. (b) Dependency-graph without test-
scope.

Figure 8.1: Maven dependency graph (with and without test scope).

Based on these benefits Scala is chosen, and cloudml-engine is written in this
language.

8.2 Automatic build system

There are two main methods used to automatically build Scala programs, either
using a Scala-specific tool called Simple Build Tool (SBT) or a more general tool
called Maven. For cloudml-engine to have an academic appeal it is essential
to choose the technology with most closeness to Java, hence Maven is the best
option. It is also important to make the library available for developers using Java
or other languages supported by the JVM. This is best achieved by using Maven,
as SBT is directed at Scala.

In SEC. 7.3 CloudML were split into four different modules, as seen in
FIG. 7.8. Maven support modules, these are used to split cloudml-engine into

59

1 trait CloudConnector {
2 def createInstances(template: Template):
3 List[RuntimeInstance]
4 def destroyInstance(id: String)
5 }
6 object CloudConnector {
7 def apply(account: Account, instanceType: String):
8 CloudConnector = instanceType match {
9 case "jclouds" =>

10 new JcloudsConnector(account);
11 case _ =>
12 new JcloudsConnector(account);
13 }
14 }

Figure 8.2: Code snippet of facade used in cloud-connector.

the appropriate modules.
A full Maven dependency graph is expressed in FIG. 8.1. There are two

graphs, both of cloudml-engine. The first graph (FIG. 8.1(a)) excludes the test-

scope, while FIG. 8.1(b) includes it. The test-scope is a Maven scope which marks
the dependencies to only be included when running a specific goal, e.g., test. In
this graph the internal and external dependencies in cloudml-engine are expressed.
All external dependencies, e.g., org.jclouds.jclouds-all (FIG. 8.1),
contain even more dependencies to other libraries and internal modules. These
dependencies are all omitted in both graphs.

8.3 Cloud connection

The connection between CloudML and cloud providers is facilitated through
a separate module, called cloud-connector. In the implementation this
module is the bridge between providers and cloudml-engine. It is built to support
several libraries and interface these, this is achieved by implementing a type of
facade pattern. It does not contain any entities, and only executes logical code.

The facade pattern used to select which library to use is expressed in
FIG. 8.2. In this listing an implementation of CloudConnector is returned
based on Scala pattern matching. By default the implementation using jclouds is
returned (JcloudsConnector). This is the files where cloud-based libraries

60

are either added or removed. End users will not use this facade, instead it is used
by Engine.

The bridge between cloudml-engine and cloud providers is an important aspect
of the application, and as a requirement it is important to use an existing library
to achieve this connection. Some libraries have already been mentioned in the
APIs section (SEC. 3.2), of these only jclouds is based on Java-technologies
and therefore suites cloudml-engine. This library gives CloudML support for
24 providers out of the box to minimize complexity, as well as stability and
robustness. These advantages directly resolves resolves R1 (software reuse).
Jclouds uses Maven for building as well, and is part of Maven central which makes
it possible to add jclouds directly as a module dependency. Jclouds contains
a template system which is used through code directly, this is utilized to map
CloudML templates to jclouds templates.

8.4 Asynchronous provisioning

Provisioning can consume up to minutes for each instance, it is therefore essential
to make use of asynchronous behavior. The solution, cloudml-engine, combines
two different approaches to achieve this, actor model and observer pattern.

Actor model. The asynchronous solution in CloudML is based on actor
model [17], resulting in concurrent communication with nodes under provision-
ing. By adopting this behavior developers exploring the implementation can then
choose to “listen” for updating events from each node, and do other jobs / idle
while the nodes are provisioned.

The actor model in CloudML is based on built-in implementations in Scala,
scala.actor.Actor. This approach solves R2 (strong technological

foundation), as the underlying technology provides the asynchronous solution.
The actor model could be implemented using external libraries instead, e.g., Akka,
in this case the approach would solve R1 (software reuse).

Observer pattern. Beside the standard model provided by Scala cloudml-

engine uses a callback-based pattern to inform users of the library when instance
statues are updated and properties are added.

61

1 import scala.actors.Actor
2 import scala.actors.Actor._
3 object Status extends Enumeration {
4 val Configuring, Building, Starting, Started = Value
5 }
6 object Event extends Enumeration {
7 val Status = Value
8 }
9 case class SetStatus(status: Status.Value)

10 case class RuntimeInstance(node: Node) extends Actor {
11 private type Listener = (Event.Value) => Unit
12 private var listeners: List[Listener] = Nil
13 var status = Status.Configuring
14 def addListener(listener: Listener) {
15 listeners = listener +: listeners
16 }
17 def act() {
18 loop {
19 receive {
20 case SetStatus (s) =>
21 status = s
22 listeners.foreach(_(Event.Status))
23 }
24 }
25 }
26 }

Figure 8.3: Code snippet of actor model implementation (RuntimeInstane).

Models@run.time. The terms are divided for a node before and under
provisioning, the essential is to introduce M@RT to achieve a logical separation.

Code snippet. In FIG. 8.3 express a code snippet from coudml-engine. Within
this snippet both the actor model as well as the observer pattern are utilized.

The actor model is implemented through built in functionality in Scala,
through:

import scala.actors.Actor

By extending Actor the RuntimeInstance class becomes an actor. The
loop and receive-parts (line 18 to line 19) are specific to this functionality,
and will be triggered on incoming messages. The incoming message is parsed

62

through Scala pattern matching against case classes, respectively the case class
created in line 9.

The observer pattern is expressed through “listeners”, defined on line
11 and line 12. Clients using the library can “listen” for updates on
RuntimeInstance by adding themselves through addListener (line 14).
In FIG. 8.3 Status is highlighted to exemplify the callback behavior, which is
shown in line 22.

8.5 From text to objects

As described in CHAP. 5 there exists numerous implementations of different
lexical formats. Three of these formats are chosen as the most important ones,
(i) XML, (ii) JSON and (iii) YAML. The most important points about these
formats are described in SEC. 7.2, i.e., (i) community, (ii) technology support,
(iii) human-readable and (iv) web-service friendly. The different points are
expressed in TABLE. 8.1, compared against the three different formats. In the
table they are weighted from zero (0) to three (3), where zero is least supported
and three is most supported, i.e., how well the formats cover the aspects described
in SEC. 7.2.

For the lexical representation of CloudML, JSON is the best alternative. This
format is used because of the values seen in TABLE. 8.1.

Here is an extracted list of the most relevant points compared against the JSON
format:

Community. This format is growing in popularity as more adapt to using
it for different purposes, e.g., databases, web-service communications,
configuration files or Internationalization and localization (i18n).

Technology support. There exists parsing libraries for most languages, for each
of the languages listed in SEC. 8.1.

Table 8.1: Comparing lexical formats with aspects from requirements. Weighting
from zero (0) to three (3) respectively least to most supported.

Requirement XML JSON YAML
Community 2 2 1
Technology support 2 2 1
Human-readable 1 2 3
Web-service friendly 2 2 0

63

Human-readable. The format itself does not have any duplications, and is
therefore easier read by humans than XML.

Web-service friendly. Used for both communicating between browsers and web
servers, and interchange between nodes in a SOA environment.

The JSON format is parsed in Scala using the lift-json parser which provides
implicit mapping to Scala case-classes. This library is part of the lift framework,
but can be included as an external component without additional lift-specific
dependencies. GSON was considered as an alternative, but mapping to Scala
case-classes was not as fluent compared to lift-json.

8.6 Usage

This section gives information on general usage of cloudml-engine. Information
such as how:

• To include it when developing applications.

• It is distributed on the Internet.

• To do method calls to initialize provisioning.

Cloudml-engine can be included into a vast variety of applications, ranging from
native desktop applications to web-service based applications, or even smartphone
apps.

Inclusion through dependencies. Cloudml-engine is a Maven module, and
therefore it can be included in applications by adding it as a Maven dependency.
Such dependency reference is expressed as a Maven configuration in FIG. 8.4.

Distribution. Cloudml-engine is not just a proof-of-concept for the sake of
conceptual assurance, but it is also a running, functional library which can be
used by anyone for testing or considerations. Beside the source repository[9] the
library is deployed to a remote repository [12] as a Maven module. This repository
is provided by CloudBees, how to include the library is viewable in FIG. 8.4. In
this figure cloudml-engine is reachable by Maven by adding a repository node
to the configuration. This is a necessity because the library is yet (April 2012) to
be deployed to Maven central.

64

1 <repositories>
2 <repository>
3 <id>cloudml-engine</id>
4 <url>
5 https://repository-eirikb.forge.cloudbees.com/release
6 </url>
7 </repository>
8 </repositories>
9 <dependencies>

10 <dependency>
11 <groupId>no.sintef</groupId>
12 <artifactId>engine</artifactId>
13 <version>0.2</version>
14 </dependency>
15 </dependencies>

Figure 8.4: Example Maven conficuration section to include cloudml-engine.

1 import no.sintef.cloudml.engine.Engine
2 ...
3 val runtimeInstances = Engine(account, List(template))

Figure 8.5: Example client (Scala) callout to cloudml-engine.

Engine callout. After successfully included cloudml-engine as a dependency
the library is accessible. A Scala callout to Engine is expressed in FIG. 8.5.

65

Chapter 9

Validation & Experiments

To validate how CloudML addresses the requirements from CHAP. 5, a topology
of three nodes (FIG. 4.1(c)) is provisioned. The experiment aims at validating
that a topology can be expressed as CloudML lexical templates. The experiment
should also prove that nodes are provisioned through cloudml-engine to two
different providers, without changing the templates. The validation will provision
on two different providers, AWS and Rackspace.

This topology is the same as Alice used for her second scenario in SEC. 7.1.
The setup is sufficient to do a full deployment of the BankManager application.

Template. The implementation uses JSON to define templates as a human
readable serialization mechanism. The lexical representation of FIG. 4.1(c) can
be seen in FIG. 9.1. There are a total of three files:

account.json. Expressed in FIG. 9.2, used to authenticate against a provider.
In FIG. 9.1 aws-ec2 is set as provider, i.e., nodes are created on
AWS. The two other properties, identity and credential are used
for authentication. For AWS that means Access Key ID and Secret Access

Key, while for Rackspace this is username and API Key.

front-ends.json. Defines front-end nodes of the topology. Each node have
specific attributes regarding their tasks, similar to Alice’s scenario, but as
an additional precaution the front-end nodes have increased RAM.

back-end.json. Defines the back-end node of the topology. Even though this is
a separate file it is a part of the same topology, and it is provisioned beside
the front-end nodes.

66

front-ends.json:

1 {
2 "name": "front-ends",
3 "nodes": [{
4 "name": "front-end1",
5 "minCores": 2,
6 "minRam": 1000
7 }, {
8 "name": "front-end2",
9 "minCores": 2,

10 "minRam": 1000
11 }]
12 }

back-end.json:

1 {
2 "name": "back-end",
3 "nodes": [{
4 "name": "back-end",
5 "minDisk": 500
6 }]
7 }

Figure 9.1: Template for validation.

The topology is split into two templates to support a load balancer, as every node
within a template will be bound to a given load balancer. The splitting is by design,
as a template is not directly bound to a topology, and is also why build accept
a list of templates. The whole text represents the Template and consequently
“nodes” is a list of Node from the model. The JSON is textual which makes
it shareable as files. Once such a file is created it can be reused (reproducibility)
on any supported provider (multi-cloud). These benefits match the requirement
R4 (lexical template).

Client. Validation is done through a CLI-based client application written in
Scala. Code snippets of this client is expressed in FIG. 9.3. On line 4
in this client a list of RuntimeInstances are created and returned to the

67

account.json:

1 {
2 "provider": "aws-ec2",
3 "identity": "...",
4 "credential": "..."
5 }

Figure 9.2: Account used for validation, JavaScript Object Notation (JSON).

client. In the background (inside cloudml-engine) these instances are provisioned
asynchronously. On line 6 each of these instances are looped through, and a
callback-based “listener” is added to each one (line 9). The callback is triggered
on line 10 when an Event is sent to the object. In case this Event is a Status
(line 12) information about the status is printed to CLI. If this status is Started
the client will print that the instance is running.

The snippets does not contain code to read the files, this is left out to save
space. File reading is done through Scala by calling

io.Source.fromFile(filename).mkString

What files to read is specified through command line arguments, where the first
argument corresponds to account information, and subsequent arguments are
template files.

To initialize provisioning the client calls:

val runtimeInstances = Engine(account, templates)

According to the meta model (FIG. 7.1) this is the build-operation. The name
“build” is a general term, while the usage in FIG. 9.3 is a Scala-specific pattern.
What Scala does here is syntactic sugar, when the client calls Engine(), Scala
converts this into Engine.apply(). This operation is overridden in Engine,
so the logic is controlled by cloudml-engine.

After receiving a list of RuntimeInstances the client runs through these
objects and attach “listeners”. These listeners works according to the observer
pattern, when a property is added or the instance changes status, a callback is
made to the client. This callback is done asynchronous through actor model. Both
of these solutions solves the requirement R5 (models@run.time).

68

1 import no.sintef.cloudml.engine.Engine
2 import no.sintef.cloudml.repository.domain._
3 ...
4 val runtimeInstances = Engine(account, templates)
5 println("Got " + runtimeInstances.size + " nodes")
6 runtimeInstances.foreach(ri => {
7 println("Adding listener to: " + ri.instance.name +
8 " (" + ri.status + ")")
9 ri.addListener((event) => {

10 event match {
11 case Event.Property =>
12 case Event.Status =>
13 println("Status changed for " + ri.instance.name +
14 ": " + ri.stat
15 if (ri.status == Status.Started) {
16 println("Node " + ri.instance.name +
17 " is now running: " + ri)
18 }
19 }
20 }
21 })

Figure 9.3: Code snippets of client used for validation (Scala).

Provisioning. The client is built using Maven, to execute it the scala:run-
goal is called. The three files, (i) account.json, (ii) front-ends.json and (iii) back-
end.json, are passed in as arguments to the client. The final command looks like
this:

mvn scala:run

-DaddArgs="account.json|front-ends.json|back-end.json"

Output from executing this command is expressed in FIG. 9.4. Some of the
output is chunked away to save space. The text in FIG. 9.4 correlates to the client
expressed in FIG. 9.3, i.e., information about status changes and when each node
is successfully provisioned. The output is identical for both AWS and Rackspace.

After provisioning. To validate the experiment screenshots of the cloud console
of each provider are made.

The screenshot of AWS console (FIG. 9) shows that three nodes are
successfully provisioned. Two of the nodes is of the type c1.medium which

69

mvn scala:run
-DaddArgs="account.json|front-ends.json|back-end.json"

[INFO] Scanning for projects...
[INFO]

...
Got 3 nodes
Adding listener to: front-end1 (Building)
Adding listener to: front-end2 (Configuring)
Adding listener to: back-end (Configuring)
Status changed for front-end1: Starting
Status changed for front-end1: Started
Node front-end1 is now running:

RuntimeInstance(Instance(front-end1,2,2,0,))
Status changed for front-end2: Building
Status changed for front-end2: Starting
Status changed for front-end2: Started
Node front-end2 is now running:

RuntimeInstance(Instance(front-end2,2,2,0,))
Status changed for back-end: Building
Status changed for back-end: Starting
Status changed for back-end: Started
Node back-end is now running:

RuntimeInstance(Instance(back-end,0,1,500,))

Figure 9.4: Output from running validation client.

corresponds to the template configuration. The last node is a t1.micro, i.e.,
this is the back-end node. This is further emphasized by the fact that it uses
EBS as Root device, to achieve additional disk space.

Screenshot of Rackspace (FIG. 9) indicate similar consistencies, e.g., RAM
Amount for each node, which corresponds with the template.

70

Figure 9.5: Screenshot of Amazon Web Service (AWS) console (left) and
Rackspace console (right) after provisioning.

71

Part III

Conclusion

72

Chapter 10

Conclusions

In this thesis four main parts have been presented. First the background part
introducing the domain of cloud computing and model-driven engineering. Then
the second part highlighting sets of technologies, frameworks, ideas and APIs
which are currently used in the two domains. Third the challenges with these
solutions are stressed, as well as a set of requirements CloudML must fulfill to
tackle these challenges. Lastly, CloudML is presented, in three phases, (i) vision,
(ii) design and (iii) implementation.

In the vision chapter the core idea of CloudML were introduced, and even
means to tackle R5 (models@run.time) were outlined through pure vision. The
design chapter stated how CloudML should be built up, what the meta-model
should look like, what underlying technologies should be used. All through
a scenario where Alice performs provisioning. In this chapter the means to
tackle R5 (models@run.time) are reinforced through the view of design. The
requirements of R2 (strong technological foundation) and R1 (software reuse)
are addressed through what underlying technology to use and alternatives. Lastly
the implementation chapter outline how CloudML is implemented as cloudml-

engine, and how this solution is built up. Both R3 (model-driven approach)
and R4 (lexical template) are tackled in this chapter by concretely choosing data
format and syntax based on the design chapter.

Results. The implementation is validated through an experiment where it is
physically executed against two providers, AWS and Rackspace. This experiment
concludes the work put into CloudML at this point to be successful.

The requirements from CHAP. 5 are compared against solutions in CloudML,
expressed in TABLE. 10.

73

Table 10.1: Result of how requirements were tackled.

Requirement CloudML solution
R1 (software reuse) The engine rely heavily on an external

library, interfacing cloud providers with
the engine. This library is used to
interface cloud providers with the engine.

R2 (strong technological foundation) Implementation utilizing Scala, a “state-
of-the-art” language. The language also
leverage support for software industry
through the JVM.

R3 (model-driven approach) In CloudML a model-based meta-model
is designed. The solution also let end
users design templates with models.

R4 (lexical template) The engine is capable of parsing and
interpreting JSON-based templates. Then
it configure and provision instances based
on these templates.

R5 (models@run.time) Asynchronous behavior introduces
through the actor model, which is built
into Scala. The actor model is com-
bined with observer pattern, enhancing
the engines ability to do asynchronous
callbacks.

R6 (multi-cloud) The library jclouds is included in the
engine, giving it support for 24 providers.

74

These are the “key results” composed by this thesis:

Meta-model. A meta-model was designed, with model-driven engineering in
mind. The meta-model was presented through a scenario where the user
provisioned nodes based on two specific topologies. The first topology
consisted of a single node, to exemplify the simplest topology. The second
setup was based on three nodes, representing a common multi-tier topology
for development purposes. Lastly the intention of a multi-cloud provision
with the meta-model was described.

Engine. An engine capable of provisioning nodes on a set of supported cloud
providers was implemented. The engine took advantage of the automatic
building system Maven, enhancing the support for internal and external
modules. Through Maven the engine became increasingly adaptable for
developers seeking to include or utilize CloudML. Internally the engine
was split into four logical sub-modules. Scala was used as programming
language for the engine, providing a state-of-the-art set of features, e.g.,
combination of object-oriented and functional programming.

Lexical templates. The engine was constructed to interpret topologies through
parsing of lexical templates. These templates were technically implemented
through the data format JSON. This is a web-service friendly data format,
which is commonly used to exchange data over web-based communication
channels. This fact effectively made the engine adaptable as a web-service
end-point. JSON is a human-readable language, which let end users create
and edit templates manually with any text-based editor.

External library. An external library was utilized, giving the engine support for
24 providers, through the advantage of this library. Such “bridge” libraries
connected the engine to cloud providers. The engine was designed so these
“bridge” libraries were abstracted behind a version of the facade pattern.
The library focused upon in this thesis was jclouds, a library written in Java.
This library was fluently added as a dependency in the Engine’s Maven
dependency.

Models@run.time. M@RT was utilized and combined with observer pattern to
achieve asynchronous provisioning. As provisioning of one single node can
take up to minutes to complete it was essential to implement asynchronous
functionality. To achieve desired asynchronous behavior in CloudML, the

75

engine exploited the advantage of combining observer pattern with Scala’s
built in actor model.

76

Chapter 11

Perspectives

In this chapter the future of CloudML is presented. It faces two main topics.
The first about short term improvements to the implementation, both in features,
enhancements and refactoring. The second stresses the future of CloudML in
terms of long term enhancements, then not just for the implementation but in core
design.

11.1 Short term (implementation) perspectives

Load balancer. The feature of load balancer is implemented in cloudml-engine,
but at writing moment (April 2012), is not supported by jclouds. The library,
jclouds, have interfaces which suggest how to interact to create load balancers,
but full support of creating them is not yet complete.

Core design of introducing a load balancer into CloudML is expressed in

1 {
2 "name": "test",
3 "loadBalancer": {
4 "name": "test",
5 "protocol": "http",
6 "loadBalancerPort": 80,
7 "instancePort": 80
8 },
9 "nodes": []

10 }

Figure 11.1: Template including load balancer.

77

FIG. 11.1. The idea is to simply let every node within a template be bound to
a given load balancer. As a template is not bound to reflect a topology, but rather
be part of one.

These interfaces in jclouds to create load balancers are utilized in cloudml-

engine, but not supported. The main point about implementing this was that when
jclouds fully support load balancers, the dependency version can be updated to the
latest version. This would in theory give full support for this new feature.

Authentication. The current version of CloudML does not express how SSH
keys should be defined. In cloudml-engine this is solved to use the default
approach by jclouds library, i.e., for AWS keys are generated as provisioning takes
place.

Examples of solutions could be to include credentials in the template file, or
the account file. The authentication method between providers differ, e.g., in AWS
SSH keys are assigned to a node, while in Rackspace a root password is returned
for each node. To implement a common solution cloudml-engine could use this
password to automatically log into each node, inject a given SSH key, obscure
root password by changing it and log out.

Refactoring of actor logic. Logic for provisioning is currently located in
cloud-connector module. The reason for this is because the implementation
built so it can differ between which library is used for provisioning, which
currently is jclouds.

What can be done as an improved alternative is to move the pro-
visioning logic out of cloud-connector module and into the actor
classes (RuntimeInstance). The modularity of not being bound to a spe-
cific library is still important, and this must be abstracted away. In the end the
repository module would become increasingly more complex in term of pure
construction. The advantage of this would become clear as the complexity of the
bridge between cloudml-engine and providers increases, e.g., if features such as
live managing should be introduced.

11.2 Long term research

Full deployment. CloudML as presented in this thesis is designed and
implemented to provision nodes over a multi-cloud environment. This idea can

78

in some simplified version be said to only create instances on a set of supported
providers. The truth is that CloudML fulfills more than just that, and even to
conquer such task by itself is not a small feat.

Although in reality end users are looking for something more than just creating
instances in the cloud, they eventually want to move their application to the cloud
environment. And to handle this they want a library which does as much of this
as possible, from pressing a button to having an application up and running on the
cloud.

What CloudML should struggle to achieve in future versions is to provide
support for full deployments. To accomplish this there are several topics to
address, such as (i) third party software, (ii) operating system, (iii) package
managers, (iv) authentication, (v) communication between nodes. Additional
software must be considered to assist in many of these topics, e.g., Puppet to
handle third party software and installations.

Cloud management. After provisioning, or even deployment, is complete the
users are left for them selves to manage any instances related to a provisioning.
Such management could be to (i) terminate nodes, (ii) stop nodes, (iii) restart
nodes, (iv) apply vertical scaling or (v) assign load balancer. The web-based
consoles offered by providers are of a high standard, e.g., the AWS console
displayed in FIG. 9. Because of this quality in consoles, there is not a greater
problem for users to do management themselves. Although such functionality
could be built into CloudML, not just as an alternative, but as an improvement
for users already relying on CloudML. The implementation, cloudml-engine,
possesses the ability to terminate nodes through a method call, provided a nodes
ID. This functionality have been mainly used for testing purposes, but is fully
operational and available. Although just providing the means of functionalities
needed to fulfill management is not sufficient for CloudML, as a model-driven
approach there must be a refined link between templates, provisioning and
management. This is the main perspective of management in CloudML, to find
solutions to tackle the management problem through researching in the model-
based realm.

79

Bibliography

[1] Amazon. Amazon web services, 2012. URL http://aws.amazon.com.

[2] Apache. Deltacloud, 2012. URL http://deltacloud.apache.org.

[3] Apache. Libcloud, 2012. URL http://libcloud.apache.org.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. Above the Clouds: A Berkeley
View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009. URL http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

[5] Uwe Aßmann, Nelly Bencomo, Betty H. C. Cheng, and Robert B. France.
Models@run.time (dagstuhl seminar 11481). Dagstuhl Reports, 1(11):91–
123, 2011.

[6] Gorka Benguria, Andrey Sadovykh, Sébastien Mosser, Antonin Abhervé,
and Bradtzæg, Eirik. Platform Independent Model for Cloud (PIM4Cloud).
Technical Report D-4.1, EU FP7 REMICS, March 2012.

[7] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Lan-

guage User Guide, The (2nd Edition) (Addison-Wesley Object Technology

Series). Addison-Wesley Professional, 2005. ISBN 0321267974.

[8] Eirik Brandtzæg. Bank manager, 2012. URL https://github.com/eirikb/
grails-bank-example.

[9] Eirik Brandtzæg. cloudml-engine, 2012. URL https://github.com/eirikb/
cloudml-engine.

[10] CA. Applogic, 2012. URL http://www.3tera.com/AppLogic.

80

http://aws.amazon.com
http://deltacloud.apache.org
http://libcloud.apache.org
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://github.com/eirikb/grails-bank-example
https://github.com/eirikb/grails-bank-example
https://github.com/eirikb/cloudml-engine
https://github.com/eirikb/cloudml-engine
http://www.3tera.com/AppLogic

[11] Trieu Chieu, A. Karve, A. Mohindra, and A. Segal. Simplifying solution
deployment on a Cloud through composite appliances. In Parallel

Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE

International Symposium on, pages 1 –5, april 2010. doi: 10.1109/IPDPSW.
2010.5470721.

[12] CloudBees. Cloudbees cloudml-engine repository, 2012. URL https:
//repository-eirikb.forge.cloudbees.com/release/.

[13] Eirik Brandtzæg, Parastoo Mohagheghi, and Sébastien Mosser. Towards a
Domain-Specific Language to Deploy Applications in the Clouds. In Third

International Conference on Cloud Computing, (CLOUD’12), July 2012.

[14] Eirik Brandtzæg, Sébastien Mosser, and Parastoo Mohagheghi. Towards
CloudML, a Model-based Approach to Provision Resources in the Clouds
(submitted). In Workshop on Model-Driven Engineering on and for the

Cloud (CloudMDE 2012), co-located with ECMFA’12, Lyngby, Danemark,
July 2012. Springer LNCS.

[15] R.T. Fielding and R.N. Taylor. Principled design of the modern Web
architecture. In Software Engineering, 2000. Proceedings of the 2000

International Conference on, pages 407 –416, 2000. doi: 10.1109/ICSE.
2000.870431.

[16] U.S. Government. Recovery, 2012. URL http://www.recovery.gov.

[17] Philipp Haller and Martin Odersky. Actors that unify threads and events.
In Proceedings of the 9th international conference on Coordination models

and languages, COORDINATION’07, pages 171–190, Berlin, Heidelberg,
2007. Springer-Verlag. ISBN 978-3-540-72793-4. URL http://dl.acm.org/
citation.cfm?id=1764606.1764620.

[18] jclouds. jclouds, 2012. URL http://jclouds.org.

[19] Stuart Kent. Model Driven Engineering. In Michael Butler, Luigia Petre, and
Kaisa Sere, editors, Integrated Formal Methods, volume 2335 of Lecture

Notes in Computer Science, pages 286–298. Springer Berlin / Heidelberg,
2002. ISBN 978-3-540-43703-1.

[20] Madeira. Madeiracloud, 2012. URL http://www.madeiracloud.com.

81

https://repository-eirikb.forge.cloudbees.com/release/
https://repository-eirikb.forge.cloudbees.com/release/
http://www.recovery.gov
http://dl.acm.org/citation.cfm?id=1764606.1764620
http://dl.acm.org/citation.cfm?id=1764606.1764620
http://jclouds.org
http://www.madeiracloud.com

[21] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing
Recommendations of the National Institute of Standards and Technology.
Nist Special Publication, 145(6):7, 2011. URL http://csrc.nist.gov/
publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf.

[22] Parastoo Mohagheghi and Thor Sæther. Software Engineering Challenges
for Migration to the Service Cloud Paradigm: Ongoing Work in the REMICS
Project. In SERVICES, pages 507–514. IEEE Computer Society, 2011. ISBN
978-1-4577-0879-4.

[23] Sébastien Mosser, Brandtzæg, Eirik, and Parastoo Mohagheghi. Cloud-
Computing: from Revolution to Evolution (published). In BElgian-

NEtherlands software eVOLution seminar (BENEVOL’11), workshop: (ex-

tended abstract), , pages 1–2, Brussels, Belgium, December 2011. VUB.

[24] Viet Cuong Nguyen and X. Qafmolla. Agile Development of Platform
Independent Model in Model Driven Architecture. In Information and

Computing (ICIC), 2010 Third International Conference on, volume 2,
pages 344–347, june 2010. doi: 10.1109/ICIC.2010.180.

[25] Dana Petcu, Ciprian Crăciun, Marian Neagul, Silviu Panica, Beniamino
Di Martino, Salvatore Venticinque, Massimiliano Rak, and Rocco Aversa.
Architecturing a Sky Computing Platform. In Michel Cezon and Yaron
Wolfsthal, editors, Towards a Service-Based Internet. ServiceWave 2010

Workshops, volume 6569 of Lecture Notes in Computer Science, pages 1–13.
Springer Berlin / Heidelberg, 2011. ISBN 978-3-642-22759-2.

[26] Dana Petcu, Georgiana Macariu, Silviu Panica, and Ciprian Crăciun.
Portable Cloud applicationsFrom theory to practice. Future Generation

Computer Systems, 2012. ISSN 0167-739X. doi: 10.1016/j.future.
2012.01.009. URL http://www.sciencedirect.com/science/article/pii/
S0167739X12000210.

[27] Rackspace. Rackspace cloud, 2012. URL http://www.rackspace.com/
cloud.

[28] Tejaswi Redkar and Tejaswi Redkar. Introducing Cloud Services. In
Windows Azure Platform, pages 1–51. Apress, 2009. ISBN 978-1-4302-
2480-8.

82

http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://www.sciencedirect.com/science/article/pii/S0167739X12000210
http://www.sciencedirect.com/science/article/pii/S0167739X12000210
http://www.rackspace.com/cloud
http://www.rackspace.com/cloud

[29] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda,
W. Emmerich, and F. Galan. The Reservoir model and architecture for open
federated cloud computing. IBM Journal of Research and Development,
53(4):4:1 –4:11, july 2009. ISSN 0018-8646. doi: 10.1147/JRD.2009.
5429058.

[30] Y. Singh and M. Sood. Model Driven Architecture: A Perspective. In
Advance Computing Conference, 2009. IACC 2009. IEEE International,
pages 1644 –1652, march 2009. doi: 10.1109/IADCC.2009.4809264.

[31] Katarina Stanoevska-Slabeva and Thomas Wozniak. Cloud Basics - An
Introduction to Cloud Computing. In Katarina Stanoevska-Slabeva, Thomas
Wozniak, and Santi Ristol, editors, Grid and Cloud Computing, pages 47–
61. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-05193-7. URL
http://dx.doi.org/10.1007/978-3-642-05193-7_4.

[32] Jinesh Varia. Architecting for the Cloud : Best Practices. Compute, 1
(January):1–23, 2010.

83

http://dx.doi.org/10.1007/978-3-642-05193-7_4

	Introduction
	I Context
	Background: Cloud Computing and Model-Driven Engineering
	Cloud Computing
	Characteristics
	Service models
	Deployment models

	Model-Driven Engineering

	State of the Art in Provisioning
	Model-Driven Approaches
	APIs
	Deployments
	Examples of cloud solutions

	Challenges in the cloud
	Scenario
	Challenges
	Summary

	Requirements
	Comparison
	Requirement dependencies

	II Contribution
	Vision, concepts and principles
	Analysis and design - CloudML
	Meta-model
	Single node topology
	Three nodes topology
	Multi-cloud provisioning

	Technological assessments and considerations
	Programming language and application environment.
	Asynchronous information gathering and distribution.
	Lexical format.

	Modules and application flow

	Implementation/realization: The cloudml-engine library
	Technology overview
	Automatic build system
	Cloud connection
	Asynchronous provisioning
	From text to objects
	Usage

	Validation & Experiments

	III Conclusion
	Conclusions
	Perspectives
	Short term (implementation) perspectives
	Long term research

